K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

nhân cả C và D với 2005 rồi tách ra so sánh

21 tháng 1 2020

Ta có : \(2005C=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005D=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)

Vì \(\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)

=> 2005.C < 2005.D

=> C < D

Ta có VẾ A

\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)

\(2005\cdot A=\frac{2005\cdot\left(2005^{2005}+1\right)}{2005^{2006}+1}\)

\(2005\cdot A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)

\(2005\cdot A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)

\(2005\cdot A=1+\frac{2004}{2005^{2006}+1}\)

Ta lại có Vế B :

\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)

\(2005\cdot B=\frac{2005\cdot\left(2005^{2004}+1\right)}{2005^{2005}+1}\)

\(2005\cdot B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)

\(2005\cdot B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)

\(2005\cdot B=1+\frac{2004}{2005^{2005}+1}\)

Nhìn vào trên , suy ra A < B . 

23 tháng 5 2018

\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2014}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2014}{2005^{2005}+1}=1+\frac{2014}{2005^{2005}+1}\)Ta thấy \(2005^{2006}+1>2005^{2005}+1\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)

\(\Rightarrow A< B\)

13 tháng 6 2018

\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)

\(\Rightarrow2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)

\(\Rightarrow2005A=1+\frac{2004}{2005^{2006}+1}\)

\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)

\(\Rightarrow2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)

\(\Rightarrow2005B=1+\frac{2004}{2005^{2005}+1}\)

Ta thấy \(\frac{2004}{2005^{2005}+1}>\frac{2004}{2005^{2006}+1}\)

Suy ra \(1+\frac{2004}{2005^{2005}+1}>1+\frac{2004}{2005^{2006}+1}\)

hay 2005B>2005A

Vậy B>A

29 tháng 5 2018

\(2005A=\frac{2005^{2005}+1}{2005^{2006}+1}=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}}\) \(=\frac{2005^{2006}+2014+1}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005B=\frac{2005^{2004}+1}{2005^{2005}+1}=\frac{2005.\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(=\frac{2005^{2005}+2004+1}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)

Vì \(2005^{2006}+1>2005^{2005}+1\)

Nên \(1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)

Hay A < B 

           Vậy A < B 

29 tháng 5 2018

sửa chỗ \(\frac{2005^{2006}+2014+1}{2005^{2006}+1}\) thành \(\frac{2005^{2006}+2004+1}{2005^{2006}+1}\)nhé 

3 tháng 5 2017

\(10A=\frac{2005^{2006}+10}{2005^{2006}+1}\)

\(10B=\frac{2005^{2005}+10}{2005^{2005}+1}\)

Rồi bạn so sánh 10A và 10B là ra.

Ai thấy đúng thì ủng hộ nha !!!, sai thì góp ý cho mink nha 

3 tháng 5 2017

Ta có

A <\(\frac{2005^{2005}+2005}{2005^{2006}+2005}=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\)=\(\frac{2005^{2004}+1}{2005^{2005}+1}\)

\(\RightarrowĐPCM\)

9 tháng 1 2016

Nhân a và b với 2005                                                                                                                                                                                ta có : 2005.a =\(\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}\)=\(\frac{2005^{2006}+2005}{2005^{2006}+1}\)\(\frac{\left(2005^{2006}+1\right)+2004}{2005^{2006}+1}\)\(\frac{2005^{2006}+1}{2005^{2006}+1}\)\(\frac{2004}{2005^{2006}+1}\)=1+\(\frac{2004}{2005^{2006}+1}\)                                                                                                                                                                                                                                           2005.b = \(\frac{2005.\left(2005^{2004}+1\right)}{2005^{2005}+1}\)=\(\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(\frac{\left(2005^{2005}+1\right)+2004}{2005^{2005}+1}\)=\(\frac{2005^{2005}+1}{2005^{2005}+1}\)\(\frac{2004}{2005^{2005}+1}\) =1+\(\frac{2004}{2005^{2005}+1}\)                                                                                                                                                                                                                                 Vì 2004=2004 , 2005^2005 +1 < 2005^2006 + 1 => \(\frac{2004}{2005^{2006}+1}\)\(\frac{2004}{2005^{2005}+1}\)=> a<b                                                                          Vậy A < B

9 tháng 1 2016

B=(2005(2005^2004+1))/(2005(2005^2005+1))=(2005^2005+2005)/(2005^2006+2005)

Có 1-A=(2005^2006-2005^2005)/(2005^2006+1)

1-B=(2005^2006-2005^2005)/(2005^2006+2005)

suy ra 1-A>1-B.Suy ra A <B

29 tháng 8 2023

2) \(-x^2+4x-2\)

\(=-\left(x^2-4x+2\right)\)

\(=-\left(x^2-4x+4-2\right)\)

\(=-\left(x-2\right)^2+2\)

Ta có: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+2\le2\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow-\left(x-2\right)^2+2=2\Leftrightarrow x=2\)

Vậy: GTLN của bt là 2 tại x=2

b) \(\sqrt{2x^2-3}\) (ĐK: \(x\ge\sqrt{\dfrac{3}{2}}\))

Mà: \(\sqrt{2x^2-3}\ge0\forall x\)

Dấu "=" xảy ra:

\(\sqrt{2x^2-3}=0\Leftrightarrow x=\sqrt{\dfrac{3}{2}}=\dfrac{3\sqrt{2}}{2}\)

Vậy GTNN của bt là 0 tại \(x=\dfrac{3\sqrt{2}}{2}\)

...

1:

b: \(4\sqrt{5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{75}\)

=>\(4\sqrt{5}>5\sqrt{3}\)

=>\(\sqrt{4\sqrt{5}}>\sqrt{5\sqrt{3}}\)

c: \(3-2\sqrt{5}-1+\sqrt{5}=2-\sqrt{5}< 0\)

=>\(3-2\sqrt{5}< 1-\sqrt{5}\)

d: \(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)

=>\(\dfrac{1}{\sqrt{2006}+\sqrt{2005}}< \dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

=>\(\sqrt{2006}-\sqrt{2005}< \sqrt{2005}-\sqrt{2004}\)

e: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\cdot\sqrt{2003\cdot2005}=4008+2\cdot\sqrt{2004^2-1}\)

\(\left(2\sqrt{2004}\right)^2=4\cdot2004=4008+2\cdot\sqrt{2004^2}\)

=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\)

=>\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

22 tháng 5 2016

\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)

vì 20052006+1>20052005+1

\(\Rightarrow\frac{4}{2005^{2006}+1}< \frac{4}{2005^{2005}+1}\)

\(\Rightarrow1+\frac{4}{2005^{2006}+1}< 1+\frac{4}{2005^{2005}+1}\)

=>A<B

22 tháng 5 2016

sai đề bài