Cho tam giác ABC (AC<AB) , M là trung điểm của BC. Qua B và C vẽ các đường thẳng BK và CH vuông góc với tia AM. Chứng minh :
a. MK=MH
b. CK//BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
a: Xét ΔAIB và ΔEIC có
IB=IC
\(\widehat{AIB}=\widehat{EIC}\)
IA=IE
Do đó: ΔAIB=ΔEIC
b: Xét ΔABC và ΔECB có
AB=EC
\(\widehat{ABC}=\widehat{ECB}\)
BC chung
Do đó: ΔABC=ΔECB
tôi có nik tuyensinh247
ai muốn có ko ?
2 khóa học : tiếng anh ; toán tôi bán lại chỉ có 100.000đ thui (1nik) trước đây tôi mua 2 khóa học mất 1.200.000 đ
10 khóa học :ngữ văn,sinh,toán,lý,anh,đề thi văn,anh,toán ,lý,sinh tôi bán lại chỉ có 500.000đ trươcqs đây tôi mua hơn 3.000.000đ (1nik)
ai muốn mua nhanh tay
a, Xét \(\Delta CHM\) và \(\Delta BKM\) vuông lần lượt tại \(H;K\) có:
\(\widehat{CMH}=\widehat{BMK}\left(đ.đỉnh\right)\)
\(CM=BM\left(M-là-t.điểm-CB\right)\)
\(\Rightarrow\Delta CHM=\Delta BKM\left(ch-gn\right)\left(1\right)\)
\(\Rightarrow MK=MH\left(2c.t.ứ\right)\)
b, Xét \(\Delta CMK\) và \(\Delta BMH\) có:
\(AM=BM\left(M-là-t.điểm-của-CB\right)\)
\(\widehat{CMK}=\widehat{BMH}\left(đ.đỉnh\right)\)
\(HM=KM\left(cmt\right)\)
\(\Rightarrow\Delta CIK=\Delta BIH\left(c-g-c\right)\)
\(\Rightarrow\widehat{CKM}=\widehat{BHM}\left(2g.t.ứ\right)\)
Mà 2 góc đang ở vị trí so le trong nên:
\(\Rightarrow HB//KC\left(đpcm\right)\)