CM:\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{1}{2}\)
với a+b+c=1 , a,b,c>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy – Schwarz, ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+a+c+a+b}\)
\(=\frac{\left(a+b+c\right)^3}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{2}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
ミ★长 - ƔξŦ★彡vãi cả cauchy-schwarz cho bậc 3: \("\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+c+a+a+b}\)
Thiết nghĩ nên sửa đề \(a,b,c>0\) thôi chứ là gì có d? Mà nếu a >b >c > d > 0 thì liệu dấu = có xảy ra?
Áp dụng BĐT Cauchy-Scwarz ta có: \(LHS\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
a
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.
b
\(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)
Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.
Áp dụng BĐT Cauchy cho 2 số dương \(\frac{a}{b^2}\) và \(\frac{1}{a}\) ta có :
\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=\frac{2}{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b^2}=\frac{1}{a}\Leftrightarrow a=b\)
+ Tương tự ta cm đc :
\(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\). Dấu "=" xảy ra <=> b = c
\(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\). Dấu "=" xảy ra <=> a = c
Do đó : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn có thể viết dưới dạng căn nhưng mà tớ không thích căn nên mới gọi nhá
Bạn có thể phóng to ra để xem ... tớ thử rồi ... nó vẫn nét
1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\) (1)
Thật vậy : BĐT (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng )
Vì vậy BĐT (1) đúng.
Áp dụng vào bài toán ta có:
\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh !
Bài 1 :
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)
Cộng theo từng vế
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Em có cách khác không sử dụng Svacxo thưa cô :
Ta có : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(=\left(\frac{a^2}{a+b}+\frac{a+b}{4}\right)+\left(\frac{b^2}{b+c}+\frac{b+c}{4}\right)+\left(\frac{c^2}{c+a}+\frac{c+a}{4}\right)-\frac{a+b+c}{2}\)
Áp dụng BĐT Cô si cho các số không âm ta được :
\(\left(\frac{a^2}{a+b}+\frac{a+b}{4}\right)+\left(\frac{b^2}{b+c}+\frac{b+c}{4}\right)+\left(\frac{c^2}{c+a}+\frac{c+a}{4}\right)-\frac{a+b+c}{2}\)
\(\ge2\sqrt{\frac{a^2}{a+b}\cdot\frac{a+b}{4}}+2\sqrt{\frac{b^2}{b+c}\cdot\frac{b+c}{4}}+2\sqrt{\frac{a^2}{b+c}\cdot\frac{c+a}{4}}-\frac{1}{2}\)
\(=a+b+c-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Có:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1/3