Câu hỏi : Cho tam giác ABC cân tại A có A=800.Tia phân giác góc B cắt AC tại I .Tính BIC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
Vì tam giác ABC cân tại A => góc B = góc C
=> \(\widehat{B}=\widehat{C}=\left(180^{\text{o}}-2.70^{\text{o}}\right):2=20^{\text{o}}\)
=> \(\widehat{CBI}=\widehat{BCI}\) = 20 : 2 = 10o
=> Xét tam giác BIC có : \(\widehat{BIC}=\)180o - 10o - 10o = 160o
Hình tự vẽ nhé !
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\left(1\right)\)
Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(2\right)\) ( tính chất tổng 3 góc 1 tam giác )
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-70^0}{2}=55^0\)
Vì tia phân giác góc B và C cắt nhau tại I \(\Rightarrow\widehat{BCI}=\widehat{CBI}=55^0\div2=27,5^0\)
Xét tam giác BIC có \(\widehat{BCI}+\widehat{BIC}+\widehat{CBI}=180^0\) ( t/c tổng 3 góc 1 tam giác )
\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{BCI}+\widehat{CBI}\right)=180^0-\left(27,5^0+27,5^0\right)=125^0\)
Tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\)
Mà 2 tia phân giác góc B và Góc C cắt nhau tại I
=> Tạo ra tam giác BIC cân tại I (do \(\widehat{B}=\widehat{C}\Leftrightarrow2\widehat{CBI}=2\widehat{BCI}\Rightarrow\widehat{CBI}=\widehat{BCI}\))
Khi đó tam giác BIC có :
\(\widehat{BIC}+2\widehat{BCI}=180^{\text{o}}\Rightarrow\widehat{BCI}=\widehat{CBI}=30^{\text{o}}\Rightarrow\widehat{C}=\widehat{B}=60^{\text{o}}\Rightarrow\widehat{A}=60^{\text{o}}\)(tổng 3 góc tam giác)
A B C E D I 1 2 1 2
a) Vì ΔABC cân tại A(gt)
=>\(\widehat{ABC}=A\widehat{CB}\)
Mà: BD, CE là tia phân giác của \(\widehat{ABC};\widehat{ACB}\)
=> \(\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)
=> \(\widehat{B_2}+\widehat{C_2}=\widehat{B_2}+\widehat{B_1}=\widehat{ABC}\)
Xét ΔABC cân tại A(gt)
=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-80}{2}=50^o\)
Xét ΔBIC có: \(\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_2}\right)=180^o-\widehat{ABC}=180-50=130^o\)
b) Xét ΔBIC có: \(\widehat{B_2}=\widehat{C_2}\left(cmt\right)\)
=> ΔBIC cân tại I
góc ABC+góc ACB=180-60=120 độ
=>góc IBC+góc ICB=60 độ
=>góc BIC=120 độ
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
a: Xet ΔACB có
BD,AI là phân giác
=>I là tâm đường tròn nội tiếp
=>I cách đều ba cạnh
b: góc IBC+góc ICB=90/2=45 độ
=>góc BIC=135 độ
c, Xét \(\Delta\)IEB và \(\Delta\)CAB có :
góc E = góc A (= 90o)
góc B - chung
AB = EB ( theo câu b)
=> hai tam giác trên bằng nhau (g.c.g) => IB=IC (cặp cạnh tương ứng)=> tam giác BIC cân tại B (đpcm)
d,Từ câu a, ta có: AB=BE => tam giác ABE cân tại B => góc BEA = góc BAE ( hai góc ở đáy)
=> góc B = 180o - ( góc AEB + góc EAB ) = 180o - 2 góc BEA (1)
Từ câu b, ta có: tam giác BIC cân tại B => góc I = góc C ( hai góc ở đáy)
=> góc B = 180o - ( góc I + góc C ) = 180o - 2 góc BCI (2)
Từ 1 và 2, ta được: góc BEA = góc BCI
mà hai góc này ở vị trí đồng vị => AE//IC (đpcm)