Tim m để hệ BPT sau có nghiệm
a) 3x - 2 > -4x + 5
3x + m +2 < 0
b) x - 2 ≤ 0
m + x > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta'=\left(m-1\right)^2-3\left(m+4\right)< 0\)
\(\Leftrightarrow m^2-5m-11< 0\Rightarrow\frac{5-\sqrt{69}}{2}< m< \frac{5+\sqrt{69}}{2}\)
b/ \(\left\{{}\begin{matrix}m< 0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(m-1\right)\left(3m+1\right)\ge0\end{matrix}\right.\) \(\Rightarrow m\le-\frac{1}{3}\)
1.
- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)
- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)
3.
\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)
4.
\(4x^2+4x+1-3x+9>4x^2+10\)
\(\Leftrightarrow x>0\)
5.
\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)
6.
\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)
Bài 3:
a: TH1: m=-2
=>-2(-2-1)x+4<0
=>6x+4<0
=>x<-4/6(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)
=4m^2-8m+4-16m-32
=4m^2-24m-28
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)
b: TH1: m=3
=>5x-4>0
=>x>4/5(loại)
TH2: m<>3
Δ=(m+2)^2-4*(-4)(m-3)
\(=m^2+4m+4+16m-48=m^2+20m-44\)
Để bất phương trình vô nghiệm thì
\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)
Xét \(\dfrac{2x-1}{x}-\dfrac{x-2}{x-1}< 0\Leftrightarrow\dfrac{x^2-x+1}{x\left(x-1\right)}< 0\)
\(\Leftrightarrow x\left(x-1\right)< 0\Leftrightarrow0< x< 1\)
Xét \(3x^2-4x+m< 0\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< -3x^2+4x\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< \max\limits_{\left(0;1\right)}\left(-3x^2+4x\right)\)
Xét \(f\left(x\right)=-3x^2+4x\) trên \(\left(0;1\right)\)
\(a=-3< 0\); \(-\dfrac{b}{2a}=\dfrac{2}{3}\in\left(0;1\right)\) \(\Rightarrow f\left(x\right)_{max}=f\left(\dfrac{2}{3}\right)=\dfrac{4}{3}\)
\(\Rightarrow m< \dfrac{4}{3}\)