1.so sánh m=\(\frac{5^{12}-1}{5^{13}+1}\) và n=\(\frac{5^{11}-1}{5^{12}+1}\)
mk cần gấp cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) =-5/7 +7/8-2/7+1/8- -1/12+ -13/12
=(-5/7-2/7)+(7/8+1/8)-(-1/12--13/12)
=-7/7+8/8 - 12/12
= -1+1+1
=1
b)= ( -3/8+11/8)-(12/11+ -1/11)+(-3/5- 2/5)
= 1- 1 + (-1)
=-1
đặt A=\(\frac{5^{12}+1}{5^{13}+1}\);B=\(\frac{5^{11}+1}{5^{12}+1}\);C= \(\frac{5^{11}-1}{5^{12}-1}\)
ta có:nhân A,B,C với 5 ta đc:\(5A=\frac{5\left(5^{12}+1\right)}{5^{13}+1}=\frac{5^{13}+5}{5^{13}+1}=\frac{5^{13}+1+4}{5^{13}+1}=\frac{5^{13}+1}{5^{13}+1}+\frac{4}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)
\(5B=\frac{5\left(5^{11}+1\right)}{5^{12}+1}=\frac{5^{12}+5}{5^{12}+1}=\frac{5^{12}+1+4}{5^{12}+1}=\frac{5^{12}+1}{5^{12}+1}+\frac{4}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)
\(5C=\frac{5\left(5^{11}-1\right)}{5^{12}-1}=\frac{5^{12}-5}{5^{12}-1}=\frac{5^{12}-1-4}{5^{12}-1}=\frac{5^{12}-1}{5^{12}-1}-\frac{4}{5^{12}-1}=1-\frac{4}{5^{12}-1}\)
vì 513+1>512+1>512-1
=>\(\frac{4}{5^{12}-1}>\frac{4}{5^{12}+1}>\frac{4}{5^{13}+1}\)
\(\Rightarrow1+\frac{4}{5^{12}-1}>1+\frac{4}{5^{12}+1}>1+\frac{4}{5^{13}+1}\)
=>5C>5B>5A
=>C>B>A
Giải như mà mình không chắc nha:
a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)
Ta có:
\(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)
\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)
Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......
b) Bạn giải tương tự nha! Lười lắm :v
công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
nên ta có : \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}\)\(=\frac{5^{12}+5}{5^{13}+5}=\frac{5.\left(5^{11}+1\right)}{5.\left(5^{12}+1\right)}=\frac{5^{11}+1}{5^{12}+1}\)
=> \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{11}+1}{5^{12}+1}\)
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{12}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}-\frac{1}{5}\)
\(B=\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{3}{7}-\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{2}{11}+\frac{2}{12}-\frac{9}{16}-\frac{1}{5}\)
\(B=0-0+0+0-\frac{2}{11}+\frac{2}{12}-\frac{9}{16}-\frac{1}{5}\)
\(B=\frac{-2}{11}+\frac{2}{12}-\frac{9}{16}-\frac{1}{5}\)
Đến đây chỉ còn cách quy đồng thôi
a,
A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99
=1−(3+5+7+...+99)=1−(3+5+7+...+99)
=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498
b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98
c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99
Ta có: \(5^{12}< 5^{13}\)
\(\Rightarrow5^{12}-1< 5^{13}+1\)
\(\Rightarrow m=\frac{5^{12}-1}{5^{13}+1}< 1\)
\(\Rightarrow m>\frac{5^{12}-1-4}{5^{13}+1+4}\)
\(\Rightarrow m>\frac{5^{12}-5}{5^{13}+5}\)
\(\Rightarrow m>\frac{5\left(5^{11}-1\right)}{5\left(5^{12}+1\right)}\)
\(\Rightarrow m>\frac{5^{11}-1}{5^{12}+1}\)
\(\Rightarrow m>n\)