số dư nho nhat khi chia 7101 khi chia cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a)
Gọi đó là số A. Nhận thấy A+2 chia hết cho 3;4;5;6
=> A+2 nhỏ nhất = BSCNN(3,4,5,6) = 60
Số A có dạng tổng quát, với n là số tự nhiên, là
A= 60.n-2
Vấn đề còn lại là tìm điều kiện của số tự nhiên n để Achc 13. Ta có:
A= 65.n -5.n-15+13
A=13.(5.n+1) - 5.(n+3)
Từ đẳng thức trên ta thấy, để A chia hết cho 13 thì 5.(n+3) phải chia hết cho 13 => (n+3) phải chia hết cho 13 => n= 13.k-3 với k là số tự nhiên, k=1,2,3...
khi đó:
A=60.(13.k-3)-2
A=780.k-182
Câu b)
Số nhỏ nhất thỏa mãn đề bài ứng với k=1, khi đó
A=598
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi số đó là a, ta có:
a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)
ta có BCNN(10,12,15)=60
suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}
bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc
![](https://rs.olm.vn/images/avt/0.png?1311)
mình tìm được số 46 chia cho 8 dư 6, chia cho 12 dư 10 ,chia hết cho 23 nhưng mà chia cho 15 không dư 13 mà lại dư 1
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Gọi số tự nhiên cần tìm là a\(\left(a\in N,a\ne0\right)\)
Ta có:a:3 dư 2\(\Rightarrow\)2a:3 dư 1\(\Rightarrow2a-1⋮3\)(1)
a:5 dư 3\(\Rightarrow\)2a:5 dư 1\(\Rightarrow2a-1⋮5\)(2)
a:7 dư 4\(\Rightarrow\)2a:7 dư 1\(\Rightarrow2a-1⋮7\)(3)
Từ (1),(2) và (3)\(\Rightarrow2a-1\in BC\left(3,5,7\right)\)
Mà a là số tự nhiên nhỏ nhất
\(\Rightarrow2a-1\in BCNN\left(3,5,7\right)\)
\(\Rightarrow2a-1=105\)
\(\Rightarrow2a=106\)
\(\Rightarrow a=53\)
(1) 7^0=01
(2) 7^1=07
(3) 7^2=49
(4) 7^3=343
-----------
(5) 7^4=2401
(6) 7^5=16807
(7) 7^6=117649
(8) 7^7=823543
----------------
(9) 7^8=.....64801
(10) 7^9=.....53607
v.v.
Thấy chu kỳ lặp đi lặp lại hai số sau cùng 01; 07; 49; 43, nhóm 4 số.
Đến số luỷ thừa 100 thì số lặp đi lặp lại 25 lần nhóm 4, số cuối 01
Vậy 7^101 là một dãy số ...07 chia 10 dư 7
(1) 7^0=01
(2) 7^1=07
(3) 7^2=49
(4) 7^3=343
-----------
(5) 7^4=2401
(6) 7^5=16807
(7) 7^6=117649
(8) 7^7=823543
----------------
(9) 7^8=.....64801
(10) 7^9=.....53607
v.v.
Thấy chu kỳ lặp đi lặp lại hai số sau cùng 01; 07; 49; 43, nhóm 4 số.
Đến số luỷ thừa 100 thì số lặp đi lặp lại 25 lần nhóm 4, số cuối 01
Vậy 7^101 là một dãy số ...07 chia 10 dư 7
Đáp số:
7
tick mik trước nha bạn,tick rùi mik tick lại cho