Cho
ABC
vuông tại A, M là trung điểm của BC. Gọi D, E theo thứ tự
là chân đường vuông góc kẻ từ M đến AB, AC.
a) Chứng minh rằng
AM DE = .
b) Gọi I là trung điểm của BM, K là trung điểm của CM. Tứ giác DIKE là hình gì? Vì
sao?
c) Tam giác ABC cần thêm điều kiện gì để tứ giác DIKE là hình chữ nhật?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Ta có: I và D đối xứng nhau qua AB
nên AB là đường trung trực của DI
Suy ra: AD=AI
hay AB là tia phân giác của \(\widehat{IAD}\)
Ta có: I và E đối xứng nhau qua AC
nên AC là đường trung trực của IE
Suy ra: AI=AE
hay AC là tia phân giác của \(\widehat{EAI}\)
Ta có: \(\widehat{EAD}=\widehat{EAI}+\widehat{DAI}\)
\(=2\left(\widehat{BAI}+\widehat{CAI}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra:E,A,D thẳng hàng
mà AD=AE(=AI)
nên A là trung điểm của DE
a: Xét tứ giác AEMD có
\(\widehat{AEM}=\widehat{ADM}=\widehat{DAE}=90^0\)
Do đó: AEMD là hình chữ nhật
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ΔHDB vuông tại D
mà DI là đường trung tuyến
nên \(DI=IH=IB\)
Xét ΔIHD có IH=ID
nên ΔIHD cân tại I
=>\(\widehat{IHD}=\widehat{IDH}\)
mà \(\widehat{IHD}=\widehat{HCA}\)(hai góc đồng vị, HD//AC)
nên \(\widehat{IDH}=\widehat{HCA}\)
ADHE là hình chữ nhật
=>\(\widehat{EAH}=\widehat{EDH}\)
=>\(\widehat{EDH}=\widehat{HAC}\)
\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)
\(=\widehat{HAC}+\widehat{HCA}\)
\(=90^0\)
=>DI\(\)\(\perp\)DE
c: ΔCEH vuông tại E
mà EK là đường trung tuyến
nên EK=KH=KC
Xét ΔKEH có KE=KH
nên ΔKEH cân tại K
=>\(\widehat{KEH}=\widehat{KHE}\)
mà \(\widehat{KHE}=\widehat{CBA}\)(hai góc đồng vị, HE//AB)
nên \(\widehat{KEH}=\widehat{CBA}=\widehat{HBA}\)
ADHE là hình chữ nhật
=>\(\widehat{HAD}=\widehat{HED}\)
=>\(\widehat{HED}=\widehat{HAB}\)
\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)
\(=\widehat{HAB}+\widehat{HBA}=90^0\)
=>KE\(\perp\)DE
Ta có: KE\(\perp\)DE
ID\(\perp\)KE
Do đó: ID//KE
Xét tứ giác KEDI có
KE//DI
KE\(\perp\)ED
Do đó: KEDI là hình thang vuông
d: DI=1cm
mà HB=2DI
nên HB=2*1=2=2cm
EK=4cm
mà CH=2EK
nên \(CH=2\cdot4=8cm\)
BC=BH+CH
=2+8
=10cm
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot10=30\left(cm^2\right)\)