Giải hệ phương trình:
\(\hept{\begin{cases}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
\(hpt\Leftrightarrow\hept{\begin{cases}x^2y^2+x^2+y^2+1=10\\\left(x+y\right)\left(xy-1\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+\left(xy-1\right)^2=10\\\left(x+y\right)\left(xy-1\right)=3\end{cases}}\)
Đặt \(u=x+y;v=xy-1\).Hệ trở thành \(\hept{\begin{cases}u^2+v^2=10\\uv=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(u+v\right)^2=16\\uv=3\end{cases}}\Leftrightarrow\hept{\begin{cases}u+v=\pm4\\uv=3\end{cases}}\)
*) Nếu \(\hept{\begin{cases}u+v=4\\uv=3\end{cases}}\)thì ta có \(\hept{\begin{cases}u=3\\v=1\end{cases}}\)hoặc \(\hept{\begin{cases}u=1\\v=3\end{cases}}\)
*Với\(\hept{\begin{cases}u=3\\v=1\end{cases}}\)thì \(\hept{\begin{cases}x+y=3\\xy-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(1;2\right)\right\}\)
Với \(\hept{\begin{cases}u=1\\v=3\end{cases}}\)thì \(\hept{\begin{cases}x+y=1\\xy-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\xy=4\end{cases}}\)
nên x,y là 2 nghiệm của pt \(t^2-t+4=0\)có \(\Delta=1^2-4.4=-15< 0\)(loại th này)
*) Nếu \(\hept{\begin{cases}u+v=-4\\uv=3\end{cases}}\)
Giải tương tự như trên ta được hệ có 6 nghiệm
\(\left(2;1\right);\left(1;2\right);\left(-3;0\right);\left(0;-3\right);\left(-2;1\right);\left(1;-2\right)\)
Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)
Đặt \(x+2=a,y+1=b\)
Ta có hệ mới
\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)
Lấy (1).(2)
=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)
Nếu a,b khác dấu
=> \(VT\le-4\)(loại)
Nếu a,b cùng dấu
=> \(VT\ge4\)
Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5
=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)
Vậy x=1,y=2 hoặc x=-7,y=-6
bn nào giải thick cho mk đoạn cùng dấu và trái dấu với
tại sao cùng dấu lại >=4
trái dấu lại<=4
và làm thế nào để tính a,b
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\)
Lấy (2) trừ (1)
\(\Rightarrow x^2+xy+y^2=7\) (3)
Từ (3) và (2)
\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)
\(\Leftrightarrow x^2+y^2=5\)(4)
Thay( 4) vào (1)
\(\Rightarrow xy=\frac{10}{3}\)
Thay xy vào (1)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)
=> tìm đc x ; y
cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x2 + xy + y2 vậy?
\(a,\hept{\begin{cases}5\left(x+2y\right)-3\left(x-y\right)=99\\x-3y=7x-4y-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+10y-3x+3y=99\\x-3y-7x+4y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+13y=99\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y=198\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y-6x+y=198-17\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}40y=181\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{181}{40}\\x=\frac{287}{80}\end{cases}}\)
Vậy hpt có nghiệm \(\left(x;y\right)=\left(\frac{287}{80};\frac{181}{40}\right)\)
Ý b, cũng làm tương tự bạn nhé ! Phá ngoặc ra rồi chuyển vế thành hpt bậc nhất 2 ẩn
\(b,\hept{\begin{cases}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=-2\\-3y-x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}\)
a) \(\left(xy+1\right)^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}xy+1=5\\xy+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{y}\\x=-\frac{6}{y}\end{cases}}\)
+ Nếu: \(x=\frac{4}{y}\Leftrightarrow\left(\frac{4}{y}+y\right)^2=49\)
\(\Leftrightarrow y^2+8+\frac{16}{y^2}=49\)
\(\Leftrightarrow\frac{y^4+16}{y^2}=41\)
\(\Leftrightarrow y^4-41y^2+16=0\) => y vô tỉ (loại)
+ Nếu: \(x=-\frac{6}{y}\Rightarrow\left(y-\frac{6}{y}\right)^2=49\)
\(\Leftrightarrow y^2+\frac{36}{y^2}=49+12\)
\(\Leftrightarrow y^4-61y^2+36=0\) => y vô tỉ (loại)
=> hpt vô nghiệm
b) tương tự