K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Bạn có thể tham khảo bài tương tự ở đây:

BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24

 CM góc COD = 90 độ 

Theo tính chất 2 tiếp tuyến cắt nhau 

Ta có : OC là phân giác góc AOM

=> góc COM = 1/2 góc AOM 

OD là phân giác góc BOM 

=> góc DOM = 1/2 góc BOM

=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot MD=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

1: Xét (O) có

CM,CA là tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

2: AC*BD=MC*MD=OM^2=R^2

25 tháng 11 2023

a: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc AOM

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc BOM

=>\(\widehat{BOM}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

=>OC\(\perp\)OD

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

\(\dfrac{AC^2+BD^2}{CD^2}\)

\(=\dfrac{AC^2+\left(3AC\right)^2}{\left(CM+MD\right)^2}\)

\(=\dfrac{10AC^2}{\left(CA+BD\right)^2}\)

\(=\dfrac{10AC^2}{\left(AC+3AC\right)^2}=\dfrac{10}{4^2}=\dfrac{10}{16}=\dfrac{5}{8}\)

 

25 tháng 11 2023

từ MC.MD= OM^2 sao có đc AC^2 + BD^2 / CD^2 vậy bạn