Cho n là số nguyên dương sao cho \(\frac{n^2-1}{3}\)là tích của hai số tự nhiên liên tiếp. Chứng minh rằng : 2n-1 là số chính phương và n là tổng hai số chính phương liên tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\) với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :
\(TH1:2n-1=3u^2;2n+1=v^2\)
\(TH2:2n-1=u^2;2n+1=3v^2\)
\(TH1:\)
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2=2\left(mod3\right)\)
Còn lại TH2 cho ta \(2n-1\) là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)
\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
1/ n3+n+2=(n+1)(n2-n+2)
Xet chẵn lẻ của n => chia hết cho 2 => hợp số
online math oi, chọn câu trả lời này đi
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N không là số chính phương
Vì 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là số chính phương
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N chia cho 4 dư 2
=> 2N + 1 chia cho 4 dư 3
=> 2N + 1 không là số chính phương
Vậy trong 3 số tự nhiên liên tiếp 2N - 1, 2N, 2N + 1 không có số nào là số chính phương.
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?