Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)
Phân tích vế phải ta được: 6(x2 + y2 + z2 − (xy + yz + zx)
Vì VT = VP nên VP - VT=0
→ 4(x2 + y2 + z2 − (xy + yz + zx)) = 0
→2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0
→2((x − y)2 + (y − z)2 + (z − x)2) = 0
→(x − y)2 + (y − z)2 + (z − x)2 = 0
→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0
→x = y = z
Đặt \(a=x+y,b=y+z,c=z+x\)
Khi đó nếu P = Q tức là \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Từ đó bạn suy ra nhé ! ^^
Dễ thấy vai trò của x, y, z là như nhau.
Nếu x, y, z có số dư khi chia cho 3 lần lược là: 0, 1, 2 thì ta có \(\hept{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮̸3\\x+y+z⋮3\end{cases}}\)(loại)
Nếu x, y, z có 2 số có cùng số dư và 1 số còn lại có số dư khác 2 số đó khi chia cho 3 thì:
\(\hept{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\\x+y+z⋮̸3\end{cases}}\)(loại)
Nếu x, y, z khi chi cho 3 có cùng số dư thì:
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮27\)
\(\Rightarrow x+y+z⋮27\)
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}=\frac{\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)}=\frac{1}{x-y}-\frac{1}{x-z}\)
\(\frac{z-x}{\left(y-z\right)\left(y-x\right)}=\frac{\left(y-x\right)-\left(y-z\right)}{\left(y-z\right)\left(y-x\right)}=\frac{1}{y-z}-\frac{1}{y-x}\)
\(\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{\left(z-y\right)-\left(z-x\right)}{\left(z-x\right)\left(z-y\right)}=\frac{1}{z-x}-\frac{1}{z-y}\)
Suy ra: \(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{1}{x-y}-\frac{1}{x-z}+\frac{1}{y-z}-\frac{1}{y-x}+\frac{1}{z-x}-\frac{1}{z-y}\)
\(=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
rồi bí mẹ chỗ này
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
\(VT=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2+y^2}{z^2}+z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}>=2\cdot\sqrt{\dfrac{y^2}{x^2}\cdot\dfrac{x^2}{y^2}}=2\)
=>\(VT>=5+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}>=2\cdot\sqrt{\dfrac{x^2}{z^2}\cdot\dfrac{z^2}{16x^2}}=\dfrac{1}{2}\)
\(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}>=\dfrac{1}{2}\)
và \(\dfrac{1}{x^2}+\dfrac{1}{y^2}>=\dfrac{2}{xy}>=\dfrac{2}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{8}{\left(x+y\right)^2}\)
=>\(\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)>=\dfrac{15}{16}z^2\cdot\dfrac{8}{\left(x+y\right)^2}=\dfrac{15}{2}\left(\dfrac{z}{x+y}\right)^2=\dfrac{15}{2}\)
=>VT>=5+1/2+1/2+15/2=27/2
Áp dụng BĐT cauchy schawrz dạng engel ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng BĐT cauchy schawrz dạng engel, ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
TK: Câu hỏi của pham trung thanh - Toán lớp 9 - Học trực tuyến OLM