K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

tham khảo ở link: https://olm.vn/hoi-dap/detail/87851120650.html

 
3 tháng 1 2020

Đặt A=2004+20042+20043+...+200410

         =(2004+20042)+(20043+20044)+...+(20049+200410)

         =2004(1+2004)+20043(1+2004)+...+20049(1+2004)

         =2004.2005+20043.2005+...+20049.2005 chia hết cho 2005

Vậy A chia hết cho 2005.

29 tháng 8 2017

ta có : \(B=2004+2004^2+2004^3+...+2004^{10}\)

\(B=\left(2004+2004^2\right)+\left(2004^3+2004^4\right)+...+\left(2004^9+2004^{10}\right)\)

\(B=2004.\left(1+2004\right)+2004^3\left(1+2004\right)+...+2004^9\left(1+2004\right)\)

\(B=2004.2005+2004^3.2005+...+2004^9.2005\)

\(B=2005.\left(2004+2004^3+...+2004^9\right)⋮2005\)

\(\Rightarrow2005.\left(2004+2004^3+2004^9\right)\) chia hết cho \(2005\)

\(\Leftrightarrow B=2004+2004^2+2004^3+...+2004^{10}\) chia hết cho \(2005\) (đpcm)

7 tháng 8 2019

B=2004 + 20042 + 20043 + ... + 200410

B=(2004 + 20042) + (20043 + 20044) + ... + (20049 + 200410)

B=2004.(1 + 2004) + 20043(1 + 2004) + ... + 20049(1 + 2004)

B=2004.2005 + 20043.2005 + ... + 20049.2005

B=2005.(2004 + 20043 + ... + 20049) ⋮ 2005 (đpcm)

13 tháng 3 2017

tầm như làm dạng này zùi

20 tháng 11 2017

C = 2004 + 20042+20043+20044+...+200410

C = (2004 +20042)+(20043+20044)+...+(20049+200410)

C = 2004(1+2004) + 20043 .(1+2004)+...+ 20049. (1+2004)

C = 2004 .2005 + 2004.2005+....+20049.2005

C = 2005.(2004+20043 + ...+20049)

Vì 2005 chia hết cho 2005 => 2005.(2004+20043 + ...+20049) chia hết cho 2005 => C chia hết cho 2005(ĐPCM)

20 tháng 11 2017

Ta có : 

\(C=2004+2004^2+2004^3+...+2004^9+2004^{10}\)

\(=\left(2004+2004^2\right)+\left(2004^3+2004^4\right)+...+\left(2004^9+2004^{10}\right)\)

\(=2004\left(1+2004\right)+2004^3\left(1+2004\right)+...+2004^9\left(1+2004\right)\)

\(=2004.2005+2004^3.2005+...+2004^9.2005\)

\(=2005\left(2004+2004^3+...+2004^9\right)⋮2005\left(đpcm\right)\)

17 tháng 5 2017

Ta có: 1.2.3.4...2004 = 1.2.3.4.5...401...2004 = [5.401].1.2.3.4.6....2004 = 2005.1.2.3....2004 chia hết cho 2005

=> Khi nhân với 1 + 1/2 + ... + 1/2004 cũng chia hết cho 2005

AI THẤY ĐÚNG NHỚ ỦNG HỘ

17 tháng 5 2017

Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\)

\(=\left(1+\frac{1}{2004}\right)+\left(\frac{1}{2}+\frac{1}{2003}\right)+\left(\frac{1}{3}+\frac{1}{2002}\right)+...+\left(\frac{1}{1002}+\frac{1}{1003}\right)\)

\(=\frac{2005}{1.2004}+\frac{2005}{2.2003}+\frac{2005}{3.2002}+...+\frac{2005}{1002.1003}\)

\(=2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+\frac{1}{3.2002}+....+\frac{1}{1002.1003}\right)\)

\(\Rightarrow A=1.2.3.....2004.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\right)\)\(=1.2.3.....2004.2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+....+\frac{1}{1002.1003}\right)\)chia hết cho 2005 (đpcm)

1 tháng 7 2021

`43^2004 + 43^2005 = 43^2004 (1 + 43) = 43^2004 . 44`

`=43^2004 . 4.11 \vdots 11`

`=>` ĐPCM.

NV
1 tháng 7 2021

\(43^{2004}+43^{2005}=43^{2004}\left(43+1\right)=44.43^{2004}⋮11\) do \(44⋮11\)