K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Đề có nhầm gì k bạn ?

3 tháng 1 2020

k nhầm đâu ạ !!!

3 tháng 1 2020

Ta có : S=4+32+33+...+3223

              =1+3+32+33+...+3223

              =(1+32+34+36)+(3+33+35+37)+...+(3217+3219+3221+3223)

              =1(1+32+34+36)+3(1+32+34+36)+...+3217(1+32+34+36)

              =1.820+3.820+...+3217.820

Vì 820\(⋮\)41 nên 1.820+3.820+...+3217.820\(⋮\)41

hay S\(⋮\)41

Vậy S\(⋮\)41.

14 tháng 12 2020
Mình cũng thắc mắc bài này. Nhưng bây giờ biết rồi. Cảm ơn bạn

Ta co: 3+3^3+3^5+...+3^1991 = (3+3^3+3^5)+...+(3^1987+1989+1991) =3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4) =3.91+...+3^1987.91 =(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13 3+3^3+3^5+...+3^1991 =(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991) =3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6) =3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41

2 tháng 1 2020

WHY CHO 3^223 CƠ MÀ

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

7 tháng 1 2020

Đây là đề thi toán tỉnh Bắc Giang nhỉ?

Bạn vào câu hỏi tương tự đi, có đó

7 tháng 1 2020

Vào đây nè : olm.vn/hoi-dap/detail/239306998482.html

5 tháng 5 2020

\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)

=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)

=> \(3S-S=3^{224}-1\)

=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên 

Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)

mà \(3^8-1=6560=41.160⋮41\) 

=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)

=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.

5 tháng 5 2020

Thank nha !

😊😊😊😊

Đề sai nha

S=3+32+33+...+3223

S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)

S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)

S=9840+...+3215.9840

S=9840.(1+...+3215)

S=41.240.(1+...+3215)\(⋮\)41

Vậy S\(⋮\)41

Chúc bn học tốt

24 tháng 12 2020

Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak

Ta có :

 \(S=4+3^2+3^3+.....+3^{223}\)

\(=1+3+3^2+3^3+....+3^{223}\)

\(\Rightarrow3S=3+3^2+3^3+3^{224}\)

\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)

Vì  \(3^4\equiv-1\left(mod41\right)\)

\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)

\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)

\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)

Hay \(S⋮41\) ( đpcm )

21 tháng 12 2022

`S=4+3^{2} +3^{3}+...+3^{223}`

`=>3S=12+3^{3}+3^{4}+....+3^{224}`

Có: \(3S-S=12+3^{3}+3^{4}+....+3^{224}-4-3^{2}-3^{3}-...-3^{233}\)

 `=>2S=12+3^{224}-4-3^2`

\(=>S=4+\dfrac{3^{224}-3^{2}}{2}\)