Cho \(S=4+3^2+3^3+....+3^{223}\)
CMR : \(S⋮41\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S=4+32+33+...+3223
=1+3+32+33+...+3223
=(1+32+34+36)+(3+33+35+37)+...+(3217+3219+3221+3223)
=1(1+32+34+36)+3(1+32+34+36)+...+3217(1+32+34+36)
=1.820+3.820+...+3217.820
Vì 820\(⋮\)41 nên 1.820+3.820+...+3217.820\(⋮\)41
hay S\(⋮\)41
Vậy S\(⋮\)41.
Ta co: 3+3^3+3^5+...+3^1991 = (3+3^3+3^5)+...+(3^1987+1989+1991) =3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4) =3.91+...+3^1987.91 =(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13 3+3^3+3^5+...+3^1991 =(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991) =3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6) =3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41
S=4+32+33+...+3223
S=1+3+32+33+...+3223
S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)
S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)
S=82+3.82+32.82+33.82+...+3119.(1+34)
S=82(3+32+33+...+3119)
vì 82⋮41⇒S⋮41
Vậy S⋮41
\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)
=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)
=> \(3S-S=3^{224}-1\)
=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên
Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)
mà \(3^8-1=6560=41.160⋮41\)
=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)
=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.
Đề sai nha
S=3+32+33+...+3223
S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)
S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)
S=9840+...+3215.9840
S=9840.(1+...+3215)
S=41.240.(1+...+3215)\(⋮\)41
Vậy S\(⋮\)41
Chúc bn học tốt
Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak
Ta có :
\(S=4+3^2+3^3+.....+3^{223}\)
\(=1+3+3^2+3^3+....+3^{223}\)
\(\Rightarrow3S=3+3^2+3^3+3^{224}\)
\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)
Vì \(3^4\equiv-1\left(mod41\right)\)
\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)
\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)
\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)
Hay \(S⋮41\) ( đpcm )
Đề có nhầm gì k bạn ?
k nhầm đâu ạ !!!