K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

sai đề ak bn, k có bđt này

2 tháng 1 2020

20+b-c-a+b-c+b-c = 20 - a + 3b -3c 

:D ?

18 tháng 1 2018

BĐT cần chứng minh tương đương :

\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\ge\dfrac{ab+bc+ac}{abc}\)

\(\Leftrightarrow\dfrac{a^8+b^8+c^8}{a^2b^2c^2}\ge ab+bc+ac\)

\(\Leftrightarrow\dfrac{a^6}{b^2c^2}+\dfrac{b^6}{a^2c^2}+\dfrac{c^6}{a^2b^2}\ge ab+bc+ac\)

Do \(a^2+b^2+c^2\ge ab+bc+ac\)

Ta phải cm

\(\dfrac{a^6}{b^2c^2}+\dfrac{b^6}{a^2c^2}+\dfrac{c^6}{a^2b^2}\ge a^2+b^2+c^2\)(1)

Đặt : \(\left(a^2;b^2;c^2\right)=\left(x;y;z\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}\ge x+y+z\)

Áp dụng C.B.S

\(\Rightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}=\dfrac{x^4}{xyz}+\dfrac{y^4}{xyz}+\dfrac{z^4}{xyz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3xyz}\)

Theo Bunhiacopxki: \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)\(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge\dfrac{\left(x+y+z\right)^4}{9}\)

Theo Cauchy : \(\Rightarrow3xyz\le\dfrac{\left(x+y+z\right)^3}{9}\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3xyz}\ge\dfrac{\dfrac{\left(x+y+z\right)^4}{9}}{\dfrac{\left(x+y+z\right)^3}{9}}=x+y+z\)

\(\Rightarrow\)\(\Rightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}\ge x+y+z\)

=> đpcm

18 tháng 1 2018

BĐT cần chứng minh tương đương :

a8+b8+c8a3b3c3≥ab+bc+acabca8+b8+c8a3b3c3≥ab+bc+acabc

⇔a8+b8+c8a2b2c2≥ab+bc+ac⇔a8+b8+c8a2b2c2≥ab+bc+ac

⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac

Do a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac

Ta phải cm

a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2(1)

Đặt : (a2;b2;c2)=(x;y;z)(a2;b2;c2)=(x;y;z)

⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z

Áp dụng C.B.S

⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz

Theo Bunhiacopxki: x2+y2+z2≥(x+y+z)23x2+y2+z2≥(x+y+z)23⇒(x2+y2+z2)2≥(x+y+z)49⇒(x2+y2+z2)2≥(x+y+z)49

Theo Cauchy : ⇒3xyz≤(x+y+z)39⇒3xyz≤(x+y+z)39

⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z

⇒⇒⇒x3yz+y3xz+z3xy≥x+y+z⇒x3yz+y3xz+z3xy≥x+y+z

=> đpcm

4 tháng 3 2020

\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)

\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)

\(\Leftrightarrow\text{0=0}\)

\(\Rightarrow\text{ĐPCM}\)

\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)

\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)

\(-2a+4b-2c=2b\)

\(-2a+4b-2c-2b=0\)

\(-2a+2b-2c=0\)

\(đpcm\) 

30 tháng 9 2015

Phản chứng rằng tất cả đều đúng. Tích các bất đẳng thức lại cho ta 

\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)>\frac{1}{2}\times\frac{2}{3}\times\frac{1}{8}\times\frac{3}{32}=\frac{1}{256}.\)

Mặt khác, ta có \(\left(a-\frac{1}{2}\right)^2\ge0\to a\left(1-a\right)\le\frac{1}{4}.\) Tương tự \(b\left(1-b\right),c\left(1-c\right),d\left(1-d\right)\le\frac{1}{4}\to\)
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)<\)\(\left(\frac{1}{4}\right)^4=\frac{1}{256},\)  mâu thuẫn.

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$

Khi đó:

$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$

$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$

Từ $(1); (2)$ ta có đpcm.

21 tháng 12 2021

=-a-b-c-1+b-c-a+c+1

=-c-2a

21 tháng 12 2021

Xét vế trái:

\(-\left(a+b+c+1\right)+\left(b-c\right)-\left(a-c-1\right)\\ =-a-b-c-1+b-c-a+c+1\\ =-c-2a\)

 

 a) Vế trái: Dùng quy tắc chuyển vế

a - b -a  - b + 2a - b - 2a + 3b

= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0

Mà Vế phải = 0

Suy ra hằng đẳng thức đúng

b) Tương tự: Vế trái

a + b - c - a +b - c + b +c - a - b + a + c

= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b

Mà vế phải = 2b

Suy ra hằng đẳng thức đúng :D