K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Chỗ cách là phần nha

15 tháng 8 2018

\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)

\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}=\sqrt{\sqrt{3}^2+2\sqrt{3}.1+1^2}+\sqrt{\sqrt{3}^2-2\sqrt{3}.1+1^2}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\dfrac{5\sqrt{3}+10\sqrt{2}}{9-8}-\dfrac{5\sqrt{3}-10\sqrt{2}}{9-8}=\sqrt{3}+1+\sqrt{3}-1-5\sqrt{3}-10\sqrt{2}-5\sqrt{3}+10\sqrt{2}=-8\sqrt{3}\)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)

14 tháng 8 2019

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=1-\sqrt{3}-\sqrt{3}-2\)

\(=-2\sqrt{3}-1\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+4-2\sqrt{3}\)

\(=6-3\sqrt{3}\)

14 tháng 8 2019

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(A=\sqrt{3}-1-\sqrt{3}-2\)

\(A=-3\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)

\(B=2-\sqrt{3}+\sqrt{3}-1\)

\(B=1\)

29 tháng 10 2023

\(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}+\dfrac{3}{\sqrt{3}}\)

\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|1-\sqrt{5}\right|+\dfrac{\left(\sqrt{3}\right)^2}{\sqrt{3}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}-1\right)+\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}\)

\(=1\)

30 tháng 7 2018

\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

                       \(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

                       \(=\sqrt{3}+1+\sqrt{3}-1\)

                       \(=2\sqrt{3}\)

\(\Rightarrow\)\(A=\sqrt{6}\)   (đpcm)

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)

\(VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{2}}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{2}}\)

\(=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)

\(=\sqrt{\frac{3+2\sqrt{3}+1}{2}}+\sqrt{\frac{3-2\sqrt{3}+1}{2}}\)

\(=\sqrt{\frac{\left(\sqrt{3}+\sqrt{1}\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{1}\right)^2}{2}}\)

\(=\frac{\left|\sqrt{3}+\sqrt{1}\right|+|\sqrt{3}-\sqrt{1}|}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+\sqrt{1}+\sqrt{3}-\sqrt{1}}{\sqrt{2}}\)

\(=\frac{2\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}\)

\(=VP\)

Vậy đẳng thức được chứng minh .

27 tháng 10 2023

Bài `1`

\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)

27 tháng 10 2023

2:

a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

b: B=5

=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)

=>\(5\sqrt{x}+15=\sqrt{x}+8\)

=>\(4\sqrt{x}=-7\)(loại)

Vậy: \(x\in\varnothing\)

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

13 tháng 8 2020

Giúp e câu a nữa ạ

28 tháng 5 2023

∆´ = 7 - 7 = 0

Phương trình có nghiệm kép:

x₁ = x₂ = -b´/a = √7

Vậy S = {√7}

28 tháng 5 2023

Cách 2:

x² - 2√7x + 7 = 0

⇔ (x - √7)² = 0

⇔ x - √7 = 0

⇔ x = √7

Vậy S = {√7}