K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

=> \(2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=> \(2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\)

=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

=> \(abc.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=abc\)

=> \(c+a+b=abc\) (đpcm)

30 tháng 12 2019

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow2=2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

\(\Leftrightarrow a+b+c=abc\)

đpcm

\(\frac{\Leftrightarrow c}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)

Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có:      

   (1/a + 1/b + 1/c)² = 2² 

=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4 

=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc) 

=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc)

 => 1/a² + 1/b² + 1/c² + 2 = 4

 => 1/a² + 1/b² + 1/c² = 2

Vậy, P= 2

9 tháng 1 2021

Hiểu rồi! Thanks!

 

 

3 tháng 9 2018

ta có: a+b+c = abc

\(\Rightarrow\frac{a+b+c}{abc}=1\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

Lại có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

                     \(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

Cho a+b+c=abc và 1/a+1/b+1/c=2.

CMR: 1/a^2 +1/b^2 +1/c^2 =2

.

DD
23 tháng 10 2021

\(abc=a+b+c\Leftrightarrow\frac{abc}{abc}=\frac{a+b+c}{abc}\)

\(\Leftrightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=Q\)

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow P=3^2-2Q=9-2=7\)

28 tháng 11 2023

Ta có \(a+b+c=abc\Leftrightarrow\dfrac{a+b+c}{abc}=1\) \(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)

Lại có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(\Leftrightarrow2^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) (đpcm)