cho 1/a + 1/b + 1/c = 2 và 1/a^2 + 1+b^2 + 1/c^2 =2
CMR: a + b + c = abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có:
(1/a + 1/b + 1/c)² = 2²
=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4
=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc)
=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc)
=> 1/a² + 1/b² + 1/c² + 2 = 4
=> 1/a² + 1/b² + 1/c² = 2
Vậy, P= 2
ta có: a+b+c = abc
\(\Rightarrow\frac{a+b+c}{abc}=1\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
Lại có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho a+b+c=abc và 1/a+1/b+1/c=2.
CMR: 1/a^2 +1/b^2 +1/c^2 =2
.
\(abc=a+b+c\Leftrightarrow\frac{abc}{abc}=\frac{a+b+c}{abc}\)
\(\Leftrightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=Q\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow P=3^2-2Q=9-2=7\)
Ta có \(a+b+c=abc\Leftrightarrow\dfrac{a+b+c}{abc}=1\) \(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
Lại có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\Leftrightarrow2^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) (đpcm)
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
=> \(2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=> \(2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=> \(abc.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=abc\)
=> \(c+a+b=abc\) (đpcm)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow2=2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Leftrightarrow a+b+c=abc\)
đpcm
\(\frac{\Leftrightarrow c}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)