K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

theo công thức Brahmagupta bđt \(\Leftrightarrow\)\(\sqrt{\frac{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}{16}-\frac{1}{4}\left(ac+bd\right)^2+\frac{1}{4}u^2v^2}\le\frac{a^2+b^2+c^2+d^2}{4}\)

Gọi u, v là 2 đường chéo của tứ giác, theo bđt Ptolemy ta coa: \(uv\le ac+bd\)\(\Leftrightarrow\)\(\frac{1}{4}u^2v^2\le\frac{1}{4}\left(ac+bd\right)^2\)

Do đó cần CM: \(\sqrt{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}\le a^2+b^2+c^2+d^2\)

\(\Leftrightarrow\)\(\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd\le\left(a^2+b^2+c^2+d^2\right)^2\)

\(\Leftrightarrow\)\(a^4+b^4+c^4+d^4\ge4abcd\) ( đúng theo Cosi ) 

Dấu "=" xảy ra khi ABCD là hình vuông 

8 tháng 6 2020

A B C D b H a c d

Vẽ AH _|_ CD: \(S_{ACD}=\frac{1}{2}ah\le\frac{1}{2}ab\)

\(\Rightarrow4S_{ACD}\le2ab\le a^2+b^2\) (Theo BĐT Cosi)

Tương tự \(4S_{ABC}\le c^2+d^2\)

Vậy \(4\left(S_{ACD}+S_{ABC}\right)\le a^2+b^2+c^2+d^2\) hay \(S\le\frac{a^2+b^2+c^2+d^2}{4}\)

Dấu "=" xảy ra <=> \(\Delta\)ABC vuông ở B và \(\Delta\)ADC vuông ở D

=> ABCD là hình vuông

27 tháng 9 2020

Giả sử tứ giác ABCD có AD = a, AB = b, BC = c, CD = d không có hai cạnh nào bằng nhau. Ta có thể giả sử a < b < c < d.

Ta có a + b + c > BD + c > d.

Do đó a + b + c + d > 2d hay S > 2d (*)

Ta có: S\(⋮\)a => S = m.a (m\(\in\)N)   (1)

S\(⋮\)b => S = n.b (n\(\in\)N)               (2)

S\(⋮\)c => S = p.d (p\(\in\)N)               (3)

S\(⋮\)d => S = q.d (q\(\in\)N)              (4)   . Từ (4) và (*) suy ra q.d > 2d => q > 2

Vì a < b < c < d (theo giả sử) nên từ (1), (2), (3) và (4) suy ra m > n > p > q > 2

Do đó q\(\ge\)3; p\(\ge\)4; n\(\ge\)5; m\(\ge\)6

Từ (1), (2), (3), (4) suy ra 1/m = a/S; 1/n = b/S; 1/p = c/S; 1/q = d/S

Ta có: \(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\ge\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}=\frac{a+b+c+d}{S}=1\)

hay \(\frac{19}{20}\ge1\)(vô lí)

Vậy tồn tại hai cạnh của tứ giác bằng nhau (đpcm)

14 tháng 6 2015

ABCD là hình vuông <=>S=a2=>a=căn(s)

=>a+b+c+d=4a=4căn(s)