K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+0.4\right)^{100}\ge0\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)

Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)

19 tháng 9 2015

bạn sẽ có: 2x^2/(1-x^2) - y = 0 => -2x^2/(x^2 -1) = y => 2x^2/(x^2 - 1) = - y. hay 2 + 2/(x^2 - 1) = -y(1). chứng minh tương tự bạn sẽ có 2y^2/(1-y^2)-z = 0 + => 2 + 2/(y^2-1) = -z(2) và 2z^2/(1-z^2) - x = 0 => 2 + 2/(z^2 -1) = - x(3).bạn đặt x^2 - 1 = a. y^2 - 1 = b. z^2 - 1 = c. => thế vào (1) (2) (3) bạn sẽ có:

2 + 2/b = -căn(c + 1)

2 + 2/a = - căn(b + 1)

2 + 2/c = - căn(a +1)

đặt căn (c+1) = m. căn (b +1) = n. căn (a + 1) = p thay vào hpt sẽ có:

2 + 2/b = -m

2 + 2/a = -n

2 +2/c = -p

giải hệ phương trình này ra bạn sẽ ra được a, b , c và từ đó bạn sẽ tìm ra được x ,y,z còn lại bạn tự làm nốt nhé. Tớ lười tính quá :|

5 tháng 7 2016

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\) (ĐKXĐ : \(x\ge1;y\ge2;z\ge3\))

\(\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Vì \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)

nên phương trình tương đương với : \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)(TMĐK)

Vậy nghiệm của phương trình :  \(\left(x;y;z\right)=\left(2;6;12\right)\)