a) Tìm các cặp số a;b thõa mãn hệ thức
\(\sqrt{a+b-2011}=\sqrt{a}+\sqrt{b}-\sqrt{2011}\)
b) Tìm tất cả các số tự nhiên n sao cho n2 - 14n + 38 là số chính phương
CÂU NÀO CŨNG CÓ TK NHA !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm các cặp góc so le trong: P2 và Q3; P3 và Q2
b) Tìm các cặp góc trong cùng phía: P2 và Q2; P3 và Q3
c) Tìm các cặp góc đồng vị: P1 và Q2; p2 và Q1; P3 và Q4' p4 và Q3
d) Tính số đo góc P4:
Ta có: Q2 = P1 = 50o ( 2 góc đồng vị)
Mà P4 + P1 = 180o ( 2 góc kề bù)
P4 = 180o - P1
P4 = 180o - 50o = 130o
ab + b = a + 5
< = > b ( a + 1 ) - ( a + 1 ) = 4
< = > ( a + 1 ) ( b - 1 ) = 4
Do a, b nguyên nên a + 1 , b - 1 nguyên
= > a + 1 , b - 1 thuộc Ư(4) \(\in\left\{\pm1;\pm2;\pm4\right\}\)
và ( a + 1 ) ( b - 1 ) = 4
Xét bảng sau :
a + 1 | 1 | 4 | -1 | -4 | 2 | -2 |
b - 1 | 4 | 1 | -4 | -1 | 2 | -2 |
a | 0 | 3 | -2 | -5 | 1 | -3 |
b | 5 | 2 | -3 | 0 | 3 | -1 |
Vậy ....
We put \(n^2-14n+38=k^2\)
\(\Rightarrow n^2-14n+49-11=k^2\)
\(\Rightarrow\left(n-7\right)^2-11=k^2\)
\(\Rightarrow\left(n-7\right)^2-k^2=11\)
\(\Rightarrow\left(n-7-k\right)\left(n-7+k\right)=11=1.11=11.1=\left(-1\right).\left(-11\right)\)
\(=\left(-11\right).\left(-1\right)\)
Prints:
Case by case, we have \(n\in\left\{13;1\right\}\)