Thực hiện phép tính:
\(\frac{y}{3x}\)+ \(\frac{2y}{3x}\) ; \(\frac{4x-1}{3x^2y}\) - \(\frac{7x+1}{3x^2y}\) ; \(\frac{6x-1}{3x^2y}\) + \(\frac{4x-1}{3x^2y}\);
Mai tớ kt ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)
Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy+xy}{xy}\)
\(=\frac{-2xy}{xy}\)
\(=-2.\)
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)
\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)
\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)
\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)
chỗ cuối tớ sai
\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)
đây nha , e xin lỗi
a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2
b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
Phần c nản quá.
a) 2x(x + y) - y(y + 2x)
= 2x2 + 2xy - y2 - 2xy
= 2x2 - y2
b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
= \(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)
= \(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)
\(\frac{y}{3x}+\frac{2y}{3x}=\frac{y+2y}{3x+3x}=\frac{3y}{3x}=\frac{y}{x}\)
\(\frac{4x-1}{3x^2y}-\frac{7x+1}{3x^2y}=\frac{4x-1-\left(7x+1\right)}{3x^2y}=\frac{-3x-2}{3x^2y}\)
\(\frac{6x-1}{3x^2y}+\frac{4x-1}{3x^2y}=\frac{6x-1+4x-1}{3x^2y}=\frac{10x-2}{3x^2y}\)