K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

hum

2 tháng 7 2019

Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF 

Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)\(\Rightarrow\widehat{ABC}=\widehat{DEF}\)

\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )

\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)

     \(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O

    \(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I

Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)

                                                           \(\Rightarrow R=3r\) ( đpcm)

5 tháng 7 2019

Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF

Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\)  ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)

\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )

\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)

\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O

Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)

                                                       \(\Rightarrow R=3r\left(đpcm\right)\)

  Rất vui vì giúp đc bạn <3

Sửa đề: Cho ΔDEF nhọn

a: Xét ΔDKF vuông tại K và ΔDIE vuông tại I có

\(\widehat{KDF}\) chung

Do đó: ΔDKF~ΔDIE

=>\(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)

=>\(DK\cdot DE=DI\cdot DF\)

b: ta có: \(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)

=>\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)

Xét ΔDKI và ΔDFE có

\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)

\(\widehat{KDI}\) chung

Do đó: ΔDKI~ΔDFE

c: Xét ΔFIE vuông tại I và ΔFHD vuông tại H có

\(\widehat{HFD}\) chung

Do đó: ΔFIE~ΔFHD

=>\(\dfrac{FI}{FH}=\dfrac{FE}{FD}\)

=>\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)

Xét ΔFIH và ΔFED có

\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)

\(\widehat{EFD}\) chung

Do đó: ΔFIH~ΔFED

=>\(\widehat{FIH}=\widehat{FED}\)

d:

Sửa đề: \(EK\cdot ED+FI\cdot FD=EF^2\)

Xét ΔEKF vuông tại K và ΔEHD vuông tại H có

góc KEF chung

Do đó: ΔEKF~ΔEHD

=>\(\dfrac{EK}{EH}=\dfrac{EF}{ED}\)

=>\(EK\cdot ED=EF\cdot EH\)

Ta có: \(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)

=>\(FI\cdot FD=FH\cdot FE\)

\(EK\cdot ED+FI\cdot FD\)

\(=EF\cdot EH+FH\cdot EF=EF^2\)

24 tháng 1

cảm ơn nha

 

1: S

2: S

3: Đ

4: S

5: Đ

6: Đ

19 tháng 2 2022

TT

Nội dung

Đúng

Sai

1

Nếu hai tam giác có ba góc bằng nhau từng đôi một thì hai tam giác đó bằng nhau.

 

x

2

Nếu ABC và DEF có AB = DE, BC =  EF,  thì ABC = DEF

x

 

3

Trong một tam giác, có ít nhất là hai góc nhọn.

x

 

4

Nếu góc A là góc ở đáy của một tam giác cân thì  > 900.

 

x

5

Nếu hai tam giác có ba cạnh tương ứng bằng nhau thì hai tam giác giác đó bằng nhau

x

 

6

Nếu một tam giác vuông có một góc nhọn bằng 450 thì tam giác đó là tam giác vuông cân Đúng

 

Chúc em học giỏi

28 tháng 11 2021

\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)

17 tháng 8 2017

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 

cạnh góc vuông : AB = DE

góc nhọn : ABC = DEF 

=> tam giác ABC = tam giác DEF ( cgv - gn )

Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

22 tháng 2 2020

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF 
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

\(\Delta DEF\) cho ta \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)

                   \(\Rightarrow\widehat{D}=180^0-\left(\widehat{E}+\widehat{F}\right)\)

                   \(\Rightarrow\widehat{D}=180^0-\left(70^0+60^0\right)=180^0-130^0=50^0\)

\(Xét\) \(\Delta ABCvà\Delta DEFcó\)

\(\widehat{A}=\widehat{D}\left(=50^0\right)\)

AB=DE

AC=DF

\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)

Vậy \(\Delta ABC=\Delta DEF\)