Hai xe lửa đi từ A và từ B cách nhau 650km đi ngược chiều nhau. Nếu 2 xe khởi hành cùng một lúc thì sẽ gặp nhau sau 10 giờ. Nhưng nếu xe lửa khởi hành từ A chậm hơn xe lửa khởi hành từ B 4 giờ 20 phút thì hai xe sẽ gặp nhau 8 giờ (Tính từ khi xe A khởi hành). Tính vận tốc mỗi xe.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xe lửa đi từ a vận tốc là : 35km
xe lửa đi từ b vận tốc là : 30 km
Bg: Gọi vận tốc ôtô khởi hành từ tỉnh A Ɩà x (km/h)
Gọi vận tốc ôtô khởi hành từ tỉnh B Ɩà Ɩà y (km/h)
(ĐK: x > y > 0).Đổi 5h22′ = 161/30h, 40′ = 2/3h
Hai ôtô đi ngược chiều nhau ѵà gặp nhau sau 5h nên ta có phương trình 5x + 5y = 400
Quãng đường mà ôtô từ đỉnh A đi được đến lúc gặp nhau Ɩà:
161/30x (km)
Quãng đường mà ôtô từ đỉnh B đi được đến lúc gặp nhau Ɩà:
161/30y – 2/3y = 47/10y (km)
Do đó ta có phương trình:
161/30x + 47/10y = 400
=> Hệ phương trình: {161/30x + 47/10y = 400; 5x + 5y = 400}
⇔ {5x + 5y = 400; 161x + 141y = 12000}
⇔ {161x + 161y = 12880; 161x + 141y = 12000}
⇔ {y = 44; 161x + 141y = 12000} ⇔ {x = 36; y = 44} (thỏa mãn)
⇒ Vận tốc c̠ủa̠ ôtô khởi hành từ A Ɩà 36 (km/h).
Vận tốc c̠ủa̠ ôtô khởi hành từ B Ɩà 44 (km/h).
Gọi thời gian dự định đi từ A đến B là x ( giờ) ( x>0)
=> quãng đường AB : 12x
1h20'=1/3=4/3h
Theo bài ra, ta có pt:
\(\frac{1}{3}.\frac{12x}{2}+\frac{20}{60}+\frac{2}{3}.\frac{12x}{36}=x-\frac{4}{3}\)
giải ra được \(x=\frac{15}{4}\) (giờ)
Vậy độ dài quãng đường AB : 12.\(\frac{15}{4}=45\left(km\right)\)
gọi vận tốc xe chậm và nhanh là x,y (km/h) với x,y>0
→độ dài AB:5x+5y=400
nếu xe chậm xuất phát trước 40p thì 2 xe gặp nhau sau 5h22p
→thời gian xe chậm đi là :5h22p=161/30h
Thời gian xe nhanh đi:5h22p -40p =4h42p =47/10h
→Độ dài AB :161/30x +47/10y=400
Theo bài ra ta có hệ: 5x+5y=400 và 161/30x +47/10y=400
→ x+y=80 và 161x+141y=12000
Vậy : x=36 ,y=44 (km/h)
Tổng 2 vận tốc: 390 : 6 = 65(km/h)
Nếu ô tô khởi hành trước xe máy 3h15p thì ô tô đi từ đầu đến lúc gặp xe máy:
4 giờ + 3 giờ 15 phút = 7 giờ 15 phút
Nếu ô tô khởi hành trước xe máy 3h15p thì xe máy đi được 4 giờ ít hơn đoạn khoảng thời gian 6 giờ một khoảng là 2 tiếng đồng hồ (8/4 giờ)
Nếu ô tô khởi hành trước xe máy 3h15p thì ô tô đi từ đầu đến lúc gặp xe máy nhiều hơn 6 giờ một khoảng là 1 giờ 15 phút (5/4 giờ)
Vậy quãng đường ô tô đi trong 5/4 giờ = quãng đường xe máy đi trong 2 giờ
Vậy: 5/4 x Vận tốc ô tô = 8/4 x vận tốc xe máy
Vậy vận tốc ô tô = 8/5 vận tốc xe máy
Tổng số phần bằng nhau: 5+8=13(phần)
Vận tốc xe ô tô: 65 : 13 x 8 = 40(km/h)
Vận tốc xe máy: 65 - 40 = 25 (km/h)
Đ.số:....
Gọi x, y (km/h) lần lượt là vận tốc của xe thứ nhất và xe thứ hai. Điều kiện: x > 0, y > 0.
Vì hai xe khởi hành đồng thời và đi ngược chiều nhau, sau 10 giờ chúng gặp nhau nên ta có:
10x + 10y = 750
Vì xe thứ nhất khởi hành trước xe thứ hai 3 giờ 45 phút thì sau khi xe thứ hai đi được 8 giờ chúng gặp nhau nên thời gian xe thứ nhất đi được là:
3 giờ 45 phút + 8 giờ = 11 giờ 45 phút = 11(3/4) = 47/4 giờ
Ta có phương trình: (47/4)x + 8y = 750
Ta có hệ phương trình:
Giá trị của x và y thỏa điều kiện bài toán.
Vậy vận tốc của xe thứ nhất là 40 km/h, vận tốc của xe thứ hai là 35 km/h.
Gọi vận tốc ô tô khởi hành từ tỉnh A là x (km/h)
Gọi vận tốc ô tô khởi hành từ tỉnh B là y (km/h)
(ĐK: \(x>y>0\) )
Đổi: \(5h22'=\dfrac{161}{30}h,40'=\dfrac{2}{3}h\)
Hai ô tô đi ngược chiều và gặp nhau sau 5h nên ta có phương trình:
\(5x+5y=400\)
Quãng đường ô tô từ tỉnh A đi được đến lúc gặp nhau là: \(\dfrac{161}{30}x\left(km\right)\)
Quãng đường ô tô từ tỉnh B đi được đến lúc gặp nhau là: \(\dfrac{161}{30}y-\dfrac{2}{3}y=\dfrac{47}{10}y\left(km\right)\)
Do đó ta có phương trình:
\(\dfrac{161}{30}x+\dfrac{47}{10}y=400\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{161}{30}x+\dfrac{47}{10}y=400\\5x+5y=400\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=36\\y=44\end{matrix}\right.\)
Vậy vận tốc ô tô khởi hành từ tỉnh A là 36 (km/h)
Vận tốc ô tô khởi hành từ tỉnh B là 44 (km/h).