Tìm giá trị nhỏ nhất của đa thức:
Q = x2 - 2.
help me, plz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5=\left[\left(x^2+2xy+y^2\right)-2z\left(x+y\right)+z^2\right]+\left(y^2-2y+1\right)+\left(z^2+4z+4\right)=\left(x+y-z\right)^2+\left(y-1\right)^2+\left(z+2\right)^2\ge0\)
\(minQ=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=1\\z=-2\end{matrix}\right.\)
`Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5`
`Q=(x^2+y^2-z^2+2xy-2yz-2xz)+(y^2-2y+1)+(z^2+4z+4)`
`Q=(x+y-z)^2+(y-1)^2+(z+2)^2`
Ta thấy :
`(x+y-z)^2>=0`
`(y-1)^2>=0`
`(z+2)^2>=0`
`=>(x+y-z)^2+(y-1)^2+(z+2)^2>=0`
Dấu = xảy ra
`<=>` $\begin{cases}x+y-z=0\\y-1=0\\z+2=0\end{cases}$
`<=>` $\begin{cases}x=-3\\y=1\\z=-2\end{cases}$
Ta có: Q = 2 x 2 – 6x = 2( x 2 – 3x) = 2( x 2 – 2.3/2 x + 9/4 - 9/4)
= 2[ x - 3 / 2 2 - 9/4 ] = 2 x - 3 / 2 2 - 9/2
Vì x - 3 / 2 2 ≥ 0 nên 2 x - 3 / 2 2 ≥ 0 ⇒ 2 x - 3 / 2 2 - 9/2 ≥ - 9/2
Suy ra: Q = - 9/2 là giá trị nhỏ nhất khi x - 3 / 2 2 = 0 ⇒ x = 3/2
Vậy Q = - 9/2 là giá trị nhỏ nhất của đa thức khi x = 3/2.
\(Q=\frac{x-81+97}{\sqrt{x}+9}=\frac{\left(\sqrt{x}+9\right)\left(\sqrt{x}-9\right)+97}{\sqrt{x}+9}=\sqrt{x}-9+\frac{97}{\sqrt{x}+9}\)
\(=\sqrt{x}+9+\frac{97}{x+9}-18\)
Áp dụng bất đẳng thức AM - GM ta có :
\(Q\ge2\sqrt{\left(\sqrt{x}+9\right).\frac{97}{\sqrt{x}+9}}-18=2.\sqrt{97}-18\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+9=\frac{97}{\sqrt{x}+9}\Rightarrow x=178-18\sqrt{97}\)
Vậy \(Q_{min}=2\sqrt{97}-18\) tại \(x=178-18\sqrt{97}\)
Ta có: A = 4x - x2 = -(x2 - 4x) = -[(x2 - 4x + 4) - 4]
= -[(x - 2)2 - 4] = -(x - 2)2 + 4 ≤ 4
Vậy giá trị lớn nhất của A bằng 4 khi x - 2 = 0 hay x = 2.
giải nhanh đi nhé mik cần gấp ai lm đủ đúng hết mik k mun cho nha giải đủ các bước nhé cảm ưn các bạn trước giúp mik nha^.^><hihiii
1) \(A=x^2+2x+3=\left(x+1\right)^2+2 \)
vi \(\left(x+1\right)^2\ge0\)(voi moi x)
\(\Rightarrow\left(x+1\right)^2+2\ge2\)(voi moi x)
Vay GTNN cua A =2 khi x=-1
2) Goi 2 so nguyen lien tiep do la x va x+1
TDTC x+1-x=1
Vi 1 la so le nen x+1-x la so le
Vay .......
3) \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)\)
\(=-2y\cdot2x=-4xy\)(dpcm)
4) \(Q=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vi \(\left(x-3\right)^2\ge0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2\le0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2+10\le10\)(voi moi x)
Vay GTLN cua Q=10 khi x=3
a) \(A=-x\left(x-2\right)+2x-8=-x^2+2x+2x-8\\ =-x^2+4x-8\\ =-\left(x^2-4x+4\right)+4-8\\ =-\left(x-2\right)^2-4\)
Vì : \(\left(x-2\right)^2\ge0\forall x\)
\(=>-\left(x-2\right)^2\le0\)
\(=>A\le-4\)
Dấu = xảy ra khi : \(\left(x-2\right)^2=0=>x=2\)
Vậy GTLN bt A là : -4 tại x = 2
Ta có: P = x 2 – 2x + 5 = x 2 – 2x + 1 + 4 = x - 1 2 + 4
Vì x - 1 2 ≥ 0 nên x - 1 2 + 4 ≥ 4
Suy ra: P = 4 là giá trị bé nhất khi x - 1 2 = 0 ⇒ x = 1
Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.
bài này muốn tìm GTNN phải sửa thành \(P=x^2-2x+5\) nhé
\(=>P=x^2-2x+1+4=\left(x-1\right)^2+4\ge\)\(4\)
dấu"=" xảy ra<=>x=1
Vậy Min P=4 khi x=1
Ta có : \(x^2\ge0\forall x\inℝ\)
\(\Rightarrow x^2\)bé nhất =0 \(\Rightarrow\)\(Q_{min=0-2=-2}\)
thank bn nha