Cho số thực a < 1. Rút gọn biểu thức \(\sqrt{\frac{15}{2}.\sqrt{\frac{10.\left(a-1\right)^2}{3}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\frac{15}{2}}.\sqrt{\frac{10.\left(a-1\right)^2}{3}}\) ( ĐK a<1 )
\(\Leftrightarrow P=\frac{\sqrt{15}}{\sqrt{2}}.\frac{\sqrt{10}.\sqrt{\left(a-1\right)^2}}{\sqrt{3}}\)
\(\Leftrightarrow P=\frac{\sqrt{15}.\sqrt{2}}{2}.\frac{\sqrt{10}.\sqrt{3}.\left|a-1\right|}{3}\)
\(\Leftrightarrow P=\frac{\sqrt{30}}{2}.\frac{\sqrt{30}\left(1-a\right)}{3}\)( vì a-1<0)
\(\Leftrightarrow P=\frac{\sqrt{30}.\sqrt{30}\left(1-a\right)}{2.3}\)
\(\Leftrightarrow\frac{30\left(1-a\right)}{6}\)
\(\Leftrightarrow5\left(1-a\right)\)
\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)
\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(b)\) Ta có : \(R< -1\)
\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)
\(\Leftrightarrow\)\(4\sqrt{x}< 6\)
\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\)\(x< \frac{9}{4}\)
Chúc bạn học tốt ~
a) ĐKXĐ: \(x\ne4\)và \(x>0\)
............................
\(\Leftrightarrow A=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{6}{3\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}+2}\right)\)\(:\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{3x-6\sqrt{x}\left(\sqrt{x}+2\right)+3\sqrt{x}\left(\sqrt{x}-2\right)}{3\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}:\left(\frac{x-2+10-x}{\sqrt{x}-2}\right)\)
\(\Leftrightarrow A=\frac{3x-6x-12\sqrt{x}+3x-6\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\left(\frac{8}{\sqrt{x}-2}\right)\)
\(\Leftrightarrow A=\frac{-18\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}-2}{8}\)
\(\Leftrightarrow A=\frac{-3}{4\left(\sqrt{x}+2\right)}\)
Vậy \(A=\frac{-3}{4\left(\sqrt{x}-2\right)}\)với \(x>0\)và \(x\ne4\)
b)Ta có \(A< 2\Leftrightarrow\frac{-3}{4\left(\sqrt{x}-2\right)}< 2\)
\(\Leftrightarrow\frac{-3}{4\left(\sqrt{x}-2\right)}-2< 0\)
\(\Leftrightarrow\frac{-3-8\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-2\right)}< 0\)
\(\Leftrightarrow\frac{-3-8\sqrt{x}-16}{4\left(\sqrt{x}-2\right)}< 0\)
\(\Leftrightarrow\frac{-18-8\sqrt{x}}{4\left(\sqrt{x}-2\right)}< 0\)
\(\Leftrightarrow-18-8\sqrt{x}< 0\)( Vì \(4\left(\sqrt{x}-2\right)>0\)với \(\forall x\))
\(\Leftrightarrow\sqrt{x}< \frac{-9}{4}\)(Vô Nghiệm)
Vậy không có gtr nào của x thỏa mãn A<2
ĐKXĐ : \(x\ge0,x\ne25,x\ne9\)
a) \(A=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-\left(x-25\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\left(\frac{-\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=-\frac{5}{\sqrt{x}+5}:\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}=\frac{-5}{\sqrt{x}+5}.\left(\frac{-\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\right)=\frac{5}{\sqrt{x}+3}\)
b) \(A< 1\Rightarrow\frac{5}{\sqrt{x}+3}< 1\Rightarrow\sqrt{x}+3>5\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Chú ý kết hợp với điều kiện xác định.
\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)
\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)
Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)
\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)
\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)
\(\Rightarrow a-2\sqrt{a}+1-2=0\)
\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)
\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)
\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)
\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)
\(=\frac{1-a}{\sqrt{a}}\)
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)