K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên

13 tháng 8 2015

8p+1 nguyên tố

8p-1 là hợp số

9 tháng 1 2016

8p➕1 la so nguyen to

8p➖1la hop so

18 tháng 7 2018

nhớ có lời giải nha.  THANKS BẠN NHIỀU

27 tháng 1 2016

Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số