K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Rút gọn:

Ta có : A = 3 + 32 + 33 + 3+ ..... + 324 + 325

          3A = 32 + 33 + 3+ ..... + 324 + 325 + 326

   3A - A = (32 + 33 + 3+ ..... + 324 + 325 + 326) - (3 + 32 + 33 + 3+ ..... + 324 + 325)

       2A  = 326 - 3

        A   = ( 326 - 3 ) / 2

Tìm dư:

Ta có: A = 3 + 32 + 33 + 3+ ..... + 324 + 325

            A = 3 + ( 32 + 33 + 3+ 35) + ( 36 + 37 + 38 + 39) + .....+ ( 322 + 323 + 324 + 325)

            A = 3 + 32 x ( 1 + 3 + 32 + 33) + 36  ( 1 + 3 + 32 + 33)  + ..... + 322 x ( 1 + 3 + 32 + 33

          A = 3 + ( 1 + 3 + 32 + 33)  x ( 32 + 3+ ..... + 322)

          A = 3 + 40 x ( 32 + 3+ ..... + 322)

Vậy A chia 40 dư 3.

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

22 tháng 12 2021

Lồn bâm

22 tháng 12 2021

Gâu gâu 

A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]

A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]

A=[1+3+3^2+3^3] NHÂN[1+...+3^2018

A=40 nhân [1+...+3^2018]

=> A chia hết cho 40

21 tháng 12 2018

Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được

30 tháng 10 2023

\(A=1+3+3^2+3^3+...+3^{2022}\)

\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)

\(=1+13\left(3+3^4+...+3^{2020}\right)\)

=>A chia 13 dư 1

30 tháng 10 2023

Bạn ơi, bạn cũng xem lại giúp mình luôn nha

2020 đâu có chia hết cho 3

Với lại dãy này có 2023 số đó bạn, 2023 cũng đâu chia hết cho 3 đâu

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

1 tháng 1 2018

\(M=1+3+3^2+............+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)

\(13\left(3^2+3^5+......+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

b, tương tự

1 tháng 1 2018

Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak