K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

\(\sqrt{3+\sqrt{20}}\)  và \(\sqrt{5+\sqrt{5}}\)

        2,7333...         và        2,6899...

TỪ ĐÓ TA THẤY ĐƯỢC RẰNG:

      2,7... > 2,6.... SUY RA  \(\sqrt{3+\sqrt{20}}\)>   \(\sqrt{5+\sqrt{5}}\)

20 tháng 12 2019

\(\sqrt{3+\sqrt{20}}\)và \(\sqrt{5+\sqrt{5}}\)

Ta có:

      \(\sqrt{3+\sqrt{20}}\)

\(=\sqrt{3+\sqrt{2^2\times5}.}\)

\(=\sqrt{3+\sqrt{2^2}\sqrt{5}}.\)

\(=\sqrt{3+2\sqrt{5}}\)

\(=\sqrt{3}+\sqrt{2}\sqrt[4]{5}.\)

\(=2,73352...\)

      \(\sqrt{5+\sqrt{5}}\)

\(=\sqrt{5}+\sqrt[4]{5}.\)

\(=2,68999...\)

Suy ra:

\(2,73352...>2,68999...\)

Vậy:

\(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}.\)

Học tốt nhé

28 tháng 12 2020

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

26 tháng 1 2017

\(Q=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

\(=\sqrt[3]{8+12\sqrt{2}+12+2\sqrt{2}}+\sqrt[3]{8-12\sqrt{2}+12-2\sqrt{2}}\)

\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)

\(=2+\sqrt{2}+2-\sqrt{2}=4\)

Làm tiếp nhé

21 tháng 12 2021

<

26 tháng 10 2018

đặt \(A=\sqrt{2}+\sqrt{6}+\sqrt{20}+\sqrt{12}=\sqrt{1}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{4}+\sqrt{4}.\sqrt{5}\)

áp dụng bất đẳng thức cosi cho các cặp số dương ta có

\(A< \frac{1+2+2+3+3+4+4+5}{2}=12\) do dấu bằng không xảy ra.

hay nói A<12

26 tháng 10 2018

??? Cosi :v \(\sqrt{2}+\sqrt{6}+\sqrt{20}+\sqrt{12}< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}\)

\(=1,5+2,5+3,5+4,5=12\)