so sánh \(\sqrt{3+\sqrt{20}};\sqrt{5+\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
\(\sqrt{3+\sqrt{20}}\) và \(\sqrt{5+\sqrt{5}}\)
2,7333... và 2,6899...
TỪ ĐÓ TA THẤY ĐƯỢC RẰNG:
2,7... > 2,6.... SUY RA \(\sqrt{3+\sqrt{20}}\)> \(\sqrt{5+\sqrt{5}}\)
\(\sqrt{3+\sqrt{20}}\)và \(\sqrt{5+\sqrt{5}}\)
Ta có:
\(\sqrt{3+\sqrt{20}}\)
\(=\sqrt{3+\sqrt{2^2\times5}.}\)
\(=\sqrt{3+\sqrt{2^2}\sqrt{5}}.\)
\(=\sqrt{3+2\sqrt{5}}\)
\(=\sqrt{3}+\sqrt{2}\sqrt[4]{5}.\)
\(=2,73352...\)
\(\sqrt{5+\sqrt{5}}\)
\(=\sqrt{5}+\sqrt[4]{5}.\)
\(=2,68999...\)
Suy ra:
\(2,73352...>2,68999...\)
Vậy:
\(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}.\)
Học tốt nhé
\(Q=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
\(=\sqrt[3]{8+12\sqrt{2}+12+2\sqrt{2}}+\sqrt[3]{8-12\sqrt{2}+12-2\sqrt{2}}\)
\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
Làm tiếp nhé
đặt \(A=\sqrt{2}+\sqrt{6}+\sqrt{20}+\sqrt{12}=\sqrt{1}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{4}+\sqrt{4}.\sqrt{5}\)
áp dụng bất đẳng thức cosi cho các cặp số dương ta có
\(A< \frac{1+2+2+3+3+4+4+5}{2}=12\) do dấu bằng không xảy ra.
hay nói A<12
??? Cosi :v \(\sqrt{2}+\sqrt{6}+\sqrt{20}+\sqrt{12}< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}\)
\(=1,5+2,5+3,5+4,5=12\)