K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2015

Giải:

S= 4+4^2+4^4+4^6+....+4^2014 

=> 4S= 4^2+4^4+4^6+....+4^2015

4S -S= ( 4^2+4^4+4^6+....+4^2015) - (4+4^2+4^4+4^6+....+4^2014)

=> 3S=4^2015-4

=>S= (4^2015 -4)/3

Vậy: S= (4^2015 -4)/3

13 tháng 2 2020

a, s1 có 2015 hạng tử

=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008

16 tháng 2 2020

Lời giải:

a,S1=1+(-2)+3+(-4)+...+(-2014)+2015

=(1-2)+(3-4)+...+(2013-2014)+2015

=-1+(-1)+...+(-1)+2015

=-1.1007+2015

=(-1007)+2015

=1008

b,S2=(-2)+4+(-6)+8+...+(-2014)+2016

=(-2+4)+(-6+8)+...+(-2014+2016)

=2+2+...+2

=2.504

=1008

c,S3=1+(-3)+5+(-7)+...+2013+(-2015)

=(1-3)+(5-7)+...+(2013-2015)

=(-2)+(-2)+...+(-2)

=(-2).504

=-1008

d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016

=(-2015+2015)+...+0+2016

=0+...+0+2016

=2016

STUDY WELL !

1 tháng 5 2017

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)

\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)

\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{2010}{4^{2014}}< 4\)

\(\Rightarrow9S< 4\)

\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)

1 tháng 5 2017

Ta có :

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )

Lấy ( 2 ) - ( 1 ) ta được :

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

gọi     \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )

\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\)  ( 4 )

Lấy ( 4 ) - ( 3 ) ta được :

\(3B=4-\frac{1}{4^{2013}}\)

\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)

\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)

vậy \(S< 1\)

24 tháng 4 2022

4S=1+24+342+....+2014420134S=1+24+342+....+201442013

4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)

3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014

3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014

đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023

4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)

3A=4−1420233A=4−142023

A=43−13.42023A=43−13.42023

⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024

⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024

do 49<48=1249<48=12

⇒S=49−19.42023−20143.42024<48=12(đpcm)

20 tháng 8 2021

\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)

\(=1+3^2+3^4+3^6+...+3^{2014}\)

\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)

\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)

Vậy ta có đpcm 

6 tháng 3 2017

Hình như là đề sai r

6 tháng 3 2017

Đề sai hình như đề phải là S=1-2+3-4+5-6(+)...(+)2014-2015+2016

25 tháng 4 2015

=>  \(4.S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

=> 4.S - S = \(\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)\)

=> 3.S = \(=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+\left(\frac{4}{4^3}-\frac{3}{4^3}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

=> 3.S =  \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

Tính A= \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> \(4.A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 4.A - A = \(4-\frac{1}{4^{2013}}\)=> A= \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)

=> 3.S = \(\frac{4}{3}-\frac{1}{3.4^{2013}}-\frac{2014}{4^{2014}}\) => S = \(\frac{4}{9}-\frac{1}{9.4^{2013}}-\frac{2014}{4^{2014}}

25 tháng 4 2015

Nếu là 1/2 thì ta so sánh 4/9 < 4/8 = 1/2 => S < 1/2

26 tháng 3 2016

2555555555555555555555555