K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Nguyễn Linh Ch Thanks cô ạ,e thiếu + 2:(( ko hiểu sao dạo này e hay nhầm ạ:(

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

Đặt \(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}=16\)

Ta có:

\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}+2\)

Theo BĐT Cô-si ta có:

\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}+2=\frac{289}{16}\)

Dấu "=" xảy ra tại \(a=6\Rightarrow x=y=\frac{1}{2}\)

19 tháng 12 2019

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

Đặt \(\frac{1}{x^2y^2}=a\)

Ta có:\(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}\ge16\)

Khi đó:

\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}\)

Theo BĐT Cô si ( từ nay bỏ AM-GM,thấy quê quê sao á ) ta có:

\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}=\frac{27}{16}\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

27 tháng 6 2016

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

28 tháng 6 2016

bài 1 sai đề

28 tháng 6 2016

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2

5 tháng 6 2022

C1:

\(x,y>0\)

\(M=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)Theo BĐT AM-GM (Caushy) ta có:

\(M=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}.2\sqrt{\dfrac{1}{x^2}.\dfrac{1}{y^2}}+4=\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{15}{4}.\dfrac{1}{xy}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{x+y}{2}\right)^2}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=20\)Đẳng thức xảy ra \(\left\{{}\begin{matrix}x^2=\dfrac{1}{16}x^2\\y^2=\dfrac{1}{16}y^2\\x+y=1\\x,y>0\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy \(MinM=20\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$