K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

gọi biểu thức trên là A. Ta có:

\(2A=2\left(1^2+...+1^{100}\right)\)

\(=2+2^2+...+2^{101}\)

\(2A-A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(A=2^{101}-1\)

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM

NV
2 tháng 10 2019

Đặt \(A=1+2+2^2+...+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=-1+2^{101}\)

\(\Rightarrow A=2^{101}-1\)

27 tháng 7 2016

Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)

A = 2101 - 1 (đpcm)

27 tháng 7 2016

Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)

A = 2101 - 1 (đpcm)