tìm MIN\(M=\frac{12x+9}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)
ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt thì x2-8x+22 nhỏ nhất
SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)
GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4
vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4
B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)
Dặt \(\frac{1}{x}\)=t ta có
B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3 dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2
\(\Leftrightarrow\)\(\frac{1}{x}\)=2
\(\Leftrightarrow\)=\(\frac{1}{2}\)
vậy GTNN là -3 tại x=1/2
2,a, GTNN A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1
do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1
dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6
vậy GTNN của A=-1 tại x=6
B,GTNN B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1
DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1
dấu =xảy ra khi và chỉ khi 4(x+1)2=0
\(\Leftrightarrow\)x=-1
vạy GTNN của B=-1 tại x=-1
C, GTLN C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)
DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\) 2- \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2
dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1
Vậy GTLN của c=2 tại x=1
1, yx2+yx+y=1
=> y(x2+x+1)=1
=>\(y=\frac{1}{x^2+x+1}\)
Vì y là số nguyên dương => 1\(⋮\)x2+x+1
=> x2+x+1=1(vì x>0)
=> vô nghiệm
Vậy không có nghiệm nguyên dương t/m pt
Biểu thức này chỉ tồn tại giá trị lớn nhất (max), không tồn tại giá trị nhỏ nhấ (min)
b, \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}=\frac{1}{3}\left(27-\frac{1}{x+9}\right)\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -3; x \(\ne\) -6; x \(\ne\) -9)
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)) = \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}\)) = \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}\)) - \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}-27+\frac{1}{x+9}\)) = 0
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-27\)) = 0
\(\Leftrightarrow\) \(\frac{1}{x}-27\) = 0
\(\Leftrightarrow\) x = \(\frac{1}{27}\) (TM ĐKXĐ)
Vậy S = {\(\frac{1}{27}\)}
Chúc bn học tốt!!
a, \(\frac{5x-3}{50x^2-2}+\frac{5x-9}{12x-60x^2}+\frac{1}{12x}=\frac{8x-5}{80x^2+16x}\) (ĐKXĐ: x \(\ne\) \(\pm\)\(\frac{1}{5}\); x \(\ne\) 0)
\(\Leftrightarrow\) \(\frac{5x-3}{2\left(5x-1\right)\left(5x+1\right)}+\frac{-5x+9}{12x\left(5x-1\right)}+\frac{1}{12x}=\frac{8x-5}{16x\left(5x+1\right)}\)
\(\Leftrightarrow\) \(\frac{24x\left(5x-3\right)\left(5x+1\right)}{48x\left(5x-1\right)\left(5x+1\right)}+\frac{-4\left(5x+1\right)\left(5x-9\right)}{48x\left(5-1x\right)\left(5x+1\right)}+\frac{4\left(5x-1\right)\left(5x+1\right)}{48x\left(5x-1\right)\left(5x+1\right)}=\frac{3\left(8x-5\right)\left(5x-1\right)}{48x\left(5x-1\right)\left(5x+1\right)}\)
\(\Leftrightarrow\) 24x(5x - 3) - 4(5x + 1)(5x - 9) + 4(5x - 1)(5x + 1) = 3(8x - 5)(5x - 1)
\(\Leftrightarrow\) 120x2 - 72x - 100x2 + 160x + 36 + 100x2 - 4 = 120x2 - 99x + 15
\(\Leftrightarrow\) 120x2 - 120x2 - 100x2 + 100x2 - 72x + 160x + 99x = 15 - 36 + 4
\(\Leftrightarrow\) 187x = -17
\(\Leftrightarrow\) x = \(\frac{-1}{11}\) (TM ĐKXĐ)
Vậy S = {\(\frac{-1}{11}\)}
Chúc bn học tốt!! (Đã được kiểm chứng không sai :)
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3