Cho tam giác ABC vuông tại A có \(\widehat{B}=60^o\). Vẽ AH ⊥ BC tại H.
b)Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh ∆AHI = ∆ADI. Từ đó suy ra AI ⊥ HD .
c)Tia AI cắt cạnh HC tại điểm K. Chứng minh ∆AHK = ∆ ADK từ đó suy ra AB // KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE = AH. Chứng minh H là trung điểm của BK và ba điểm D, K, E thẳng hàng
b) Xét 2 \(\Delta\) \(AHI\) và \(ADI\) có:
\(AH=AD\left(gt\right)\)
\(HI=DI\) (vì I là trung điểm của \(HD\))
Cạnh AI chung
=> \(\Delta AHI=\Delta ADI\left(c-c-c\right)\)
=> \(\widehat{AIH}=\widehat{AID}\) (2 góc tương ứng).
Ta có: \(\widehat{AIH}+\widehat{AID}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{AIH}=\widehat{AID}\left(cmt\right)\)
=> \(2.\widehat{AIH}=180^0\)
=> \(\widehat{AIH}=180^0:2\)
=> \(\widehat{AIH}=90^0.\)
=> \(\widehat{AIH}=\widehat{AID}=90^0\)
=> \(AI\perp HD.\)
c) Theo câu b) ta có \(\Delta AHI=\Delta ADI.\)
=> \(\widehat{HAI}=\widehat{DAI}\) (2 góc tương ứng).
Hay \(\widehat{HAK}=\widehat{DAK}.\)
Xét 2 \(\Delta\) \(AHK\) và \(ADK\) có:
\(AH=AD\left(gt\right)\)
\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)
Cạnh AK chung
=> \(\Delta AHK=\Delta ADK\left(c-g-c\right)\)
=> \(\widehat{AHK}=\widehat{ADK}\) (2 góc tương ứng).
Mà \(\widehat{AHK}=90^0\) (vì \(AH\perp BC\))
=> \(\widehat{ADK}=90^0\)
=> \(AD\perp KD.\)
Vì \(\Delta ABC\) vuông tại \(A\left(gt\right)\)
=> \(AB\perp AC.\)
Hay \(AB\perp AD\)
Mà \(AD\perp KD\left(cmt\right).\)
=> \(AB\) // \(KD\) (từ vuông góc đến song song).
Chúc bạn học tốt!