Cho tam giác nhọn ABC. Đường cao BE và CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối ứng với H qua M.
a, Chứng Minh rằng tứ giác BHCK là Hình Bình Hành
b, Tính số đo các góc của ABK và ACK
c, Tam giác ABC cần điều kiện gì để BHCK là hình thoi
a) Có M là td BC
MH = MK ( K đối xứng H qua M)
Suy ra M là td mỗi đg
suy ra BHCK là hbh
Vậy...
b) có ch là đường cao tam giác ABC ( H là trực tâm)
suy ra CH vuông góc AB
có bhck là hình bình hành
=> DK song song với CH
Suy ra DK vuông góc AB
Vậy góc ABK bằng 90 độ
C) BHCK là hình thoi
Khi và chỉ khi BH = CH
Khi và chỉ khi H là trọng tâm của tam giác ABC
Khi và chỉ khi tam giác ABC đều
Vận tam giác ABC đều thì tứ giác BHCK là hình thoi
Biết bạn đề bài này lâu rồi nhưng mà mình cứ giải Xem cách của mình với các của bạn cách nào tiện hơn hihi