Tìm n để (3x3 + 10x2 - 5 + n) để chia hết cho (3x + 1).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x^3+10x^2-5+n⋮3x+1\)
\(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1-4+n⋮3x+1\)
\(\Leftrightarrow x^2\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow\left(3x+1\right)\left(x^2+3x-1\right)-\left(4-n\right)⋮3x+1\)
mà \(\left(3x+1\right)\left(x^2+3x-1\right)⋮3x+1\)
nên \(-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow-\left(4-n\right)=0\)
\(\Leftrightarrow4-n=0\)
\(\Leftrightarrow n=4\)
Vậy: Để đa thức \(3x^3+10x^2-5+n\) chia hết cho đa thức 3x+1 thì n=4
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)
3 x 3 + 2 x 2 − 7 x + a : 3 x − 1 = 3 x 3 − x 2 + 3 x 2 − x − 6 x + 2 − 2 + a : 3 x − 1 = x 2 3 x − 1 + x 3 x − 1 − 2 3 x − 1 + a − 2 : 3 x − 1 = x 2 + x − 2 3 x − 1 + a − 2 : 3 x − 1
Đa thức 3 x 3 + 2 x 2 − 7 x + a chia hết cho đa thức 3 x - 1 khi và chỉ khi a − 2 = 0 ⇒ a = 2 .
a) Đa thức thương x 2 + 3x – 1 và đa rhức dư -4.
Kiểm tra bằng cách thực hiện (3x + 1)( x 2 + 3x – 1) + (-4),
b) Đa thức thương x + 2 và đa thức dư –x + 5.
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)