K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

a) \(x^2-2x=0\)

\(x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

b) \(x^2-7x+12=0\)

\(x^2-4x-3x+12=0\)

\(\left(x^2-3x\right)-\left(4x-12\right)=0\)

\(x\left(x-3\right)-4\left(x-3\right)=0\)

\(\left(x-4\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)

a) \(x^2-2x=0\)

  \(x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)                                  \(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x^2-7x+12=0\)

   \(x^2-3x-4x+12=0\)

    \(\left(x^2-3x\right)-\left(4x-12\right)=0\)

    \(x\left(x-3\right)-4\left(x-3\right)=0\)

      \(\left(x-3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\)                    \(\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

15 tháng 11 2021

a) x= + - 5
b) x\(\in\)\(\left\{-1;-7\right\}\)

15 tháng 11 2021

a/ \(x^2-25=0\)

\(\Rightarrow\left(x+5\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+5=0\Rightarrow x=-5\\x-5=0\Rightarrow x=5\end{matrix}\right.\)

 

b/ \(x\left(x+7\right)+x+7=0\)

\(x\left(x+7\right)+\left(x+7\right)=0\)

\(\left(x+7\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+7=0\Rightarrow x=-7\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

22 tháng 12 2021

a) \(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\Rightarrow\left(x-1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)

\(\Leftrightarrow2x-1=0\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)

\(\Leftrightarrow x^3-x^3-1=x\)

hay x=-1

c: Ta có: \(56x^4+7x=0\)

\(\Leftrightarrow7x\left(8x^3+1\right)=0\)

\(\Leftrightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d: Ta có: \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

10 tháng 12 2021

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

21 tháng 7 2021

Bài 10:

a) (x+2)2 -x(x+3) + 5x = -20

=> x2 + 4x + 4 - x2 - 3x + 5x = -20

=> 6x = -20 + (-4)

=> 6x = -24

=> x = -4

b) 5x3-10x2+5x=0   

=>5x(x2-2x+1)=0

=>5x(x-1)2 =0

=> 5x=0 hoặc (x-1)2=0

=>x=0 hoặc x=1

c) (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x- 1) = 0

<=>  (x2 - 1)(-3x2) = 0

<=> (x2 - 1)=0 hoặc (-3x2) =0

<=> x2=1 hoặc x2=0

<=> x=−1;1 hoặc x=0

d)

(x+1)3−(x−1)3−6(x−1)2=-19

⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0

⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0

⇔12x+13=0⇔12x+13=0

⇔12x=-13

⇔x=-23/12

Học tốt nhé:333banhqua

 

 

 

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

20 tháng 11 2017

a)  x 2   –   7 x   +   12   =   0

Có a = 1; b = -7; c = 12

⇒   Δ   =   b 2   –   4 a c   =   ( - 7 ) 2   –   4 . 1 . 12   =   1   >   0

⇒ Phương trình có hai nghiệm phân biệt x 1 ;   x 2  thỏa mãn:

Giải bài 27 trang 53 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.

b) x2 + 7x + 12 = 0

Có a = 1; b = 7; c = 12

⇒ Δ = b2 – 4ac = 72 – 4.1.12 = 1 > 0

⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:

Giải bài 27 trang 53 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.