K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho x > 1. Tìm min P = 4x + 25/x - 1

Ta có:

P=4(x-1)+25/(x-1)+4

>=2 căn [4(x-1).25/(x-1)]+4=25

Dấu '=' khi 4(x-1)=25/(x-1)=>(x-1)^2=25/4=>x-1=5/2=>x=7/2

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

20 tháng 11 2015

Cauchy-Swarz

\(1=\frac{2^2}{4x}+\frac{2^2}{y}+\frac{3^2}{z}\ge\frac{\left(2+2+3\right)^2}{4x+y+z}\)

\(\Rightarrow4x+y+z\ge49\)

Đẳng thức xảy ra khi \(\frac{2}{4x}=\frac{2}{y}=\frac{3}{z}\)

 

29 tháng 4 2018

x>o nhá

28 tháng 9 2020

Ta có: \(A=4x+\frac{25}{x-1}=4\left(x-1\right)+\frac{25}{x-1}+4\)

Do x > 1 => x - 1 > 0

Áp dụng bđt cosi cho 2 số dương 4(x - 1) và 25/(x - 1)

Ta có: \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2.10=20\)

=> \(4\left(x-1\right)+\frac{25}{x-1}+4\ge20+4=24\)

Hay \(A\ge24\)

Dấu "=" xảy ra <=> \(4\left(x-1\right)=\frac{25}{x-1}\)

<=> \(\left(x-1\right)^2=\frac{25}{4}\) <=> \(\orbr{\begin{cases}x-1=\frac{5}{2}\\x-1=-\frac{5}{2}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{7}{2}\left(tm\right)\\x=-\frac{3}{2}\left(ktm\right)\end{cases}}\)

Vậy MinA = 24 khi x = 7/2

14 tháng 10 2016

A=\(4\left(x-1\right)+\frac{25}{x-1}+4\)

Mà theo cô-si ta được \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2\cdot10=20\)

nên A\(\ge\)20+4=24

dấu bằng xảy ra khi 4(x-1)=25/(x-1)...