Với x, y là các số thực dương thỏa mãn x+y=1. Tìm GTNN của \(Q=2x^2-y^2+x+\frac{1}{x}+2020\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=1=>y=1-x
\(Q=2x^2-y^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-2x+x^2\right)+x+\frac{1}{x}+2020\)\(=2x^2-1+2x-x^2+x+\frac{1}{x}+2020\)
\(=\left(x^2+2x+1\right)+\left(x+\frac{1}{x}\right)+2018\)\(=\left(x+1\right)^2+\left(x+\frac{1}{x}\right)+2018\)
Ta có: \(\left(x+1\right)^2\ge0\forall x>0\)
Áp dụng BĐT Cô-si cho 2 số dương \(x\)và \(\frac{1}{x}\):
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow Q\ge2+2018=2020\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x=\frac{1}{x}\end{cases}\Leftrightarrow x=-1}\)\(\Rightarrow y=1-\left(-1\right)=2\)
Vậy \(minQ=2020\Leftrightarrow x=-1;y=2\)
Lời giải
Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)
Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)
\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)
\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)
Vậy ...
Áp dụng BĐT Bunyakovsky ta được:
\(\left(x+y\right)\left(\frac{2020}{x}+\frac{1}{2020y}\right)\ge\left(\sqrt{x}\cdot\sqrt{\frac{2020}{x}}+\sqrt{y}\cdot\sqrt{\frac{1}{2020y}}\right)\)
\(=\left(\sqrt{2020}+\sqrt{\frac{1}{2020}}\right)^2=2020+\frac{1}{2020}+2=2022\frac{1}{2020}\)
\(\Leftrightarrow\frac{2021}{2020}\cdot S\ge2022\frac{1}{2020}\)
\(\Rightarrow S\ge2022\frac{1}{2020}\div\frac{2021}{2020}=2021\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{\sqrt{x}}{\sqrt{\frac{2020}{x}}}=\frac{\sqrt{y}}{\sqrt{\frac{1}{2020y}}}\\x+y=\frac{2021}{2020}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2020y\\x+y=\frac{2021}{2020}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)
Vậy Min(S) = 2021 khi \(\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)
Ta có: \(1\ge x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)
\(\Rightarrow P\ge2\sqrt{\frac{1}{xy}}\cdot\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}\)
Mà \(\frac{1}{xy}+xy=\frac{15}{16}\cdot\frac{1}{xy}+\frac{1}{16xy}+xy\)
\(\ge\frac{15}{16}\cdot4+2\sqrt{\frac{1}{16xy}\cdot xy}=\frac{15}{16}\cdot4+\frac{2}{4}=\frac{17}{4}\)
\(\Rightarrow P\ge2\cdot\frac{\sqrt{17}}{2}=\sqrt{17}\) xảy ra khi \(x=y=\frac{1}{2}\)
Dự đoán dấu "=" khi x = 2 ; y= 1
Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được
\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)
\(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)
\(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)
\(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)
Dấu "=" khi x = 2 ; y = 1
Bài toán easy!
\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)
Áp dụng BĐT AM-GM,ta có:
\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)
\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)
\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)
\(\ge28+2+3-9=24\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)
\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)
\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)
Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)