Tìm số dư của phép chia 31:6 =A.1 B.2 C.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)
\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)
\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)
b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6
b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0
=>m=-5 hoặc m=4/17
Vì a bằng số dư của phép chia N cho 2.
=> a = 1
=> abcd thuộc dạng 1bcd
=> e thuộc 0, 1, 2, 3, 4, 5
Vì d bằng số dư của phép chia N cho 5
=> de thuộc 00, 11, 22, 33, 44, 05
Vì c bằng số dư của phép chia N cho 4
=> cde thuộc 000, 311, 222, 133, 044, 105
=. abcde có dạng là 1b000, 1b311, 1b222, 1b133, 1b044, 1b105
Vì b là số dư của phép chia N cho 3
=> a + b + c + d + e chia hết cho 3
=> Chọn được số 1b311, 1b044
Ta được các số là : 10311, 11311, 12311, 10044, 11044, 12044.
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
câu trả lời là A.1
A = 1
VÌ 30 : 6 =5
nên 31 : 6 = 5 ( dư 1)