K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

\(1,ĐK:x\ne0;x\ne\pm6\)

\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)

\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)

\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)

\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)

12 tháng 2 2020

Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

9 tháng 5 2018

b)

)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)

=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)

=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)

=\(\frac{4\sqrt{5}}{4-5}\)

=\(\frac{4\sqrt{5}}{-1}\)

\(-4\sqrt{5}\)

9 tháng 10 2020

1.\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}=\frac{\left(5+\sqrt{5}\right)\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\frac{25+10\sqrt{5}+5}{25-5}+\frac{25-10\sqrt{5}+5}{25-5}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{20}\)

\(=\frac{60}{20}=3\)

2.

a) \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)

ĐK : x ≥ 0

<=> \(\sqrt{5x\cdot9}-2\sqrt{5x\cdot4}+2\sqrt{5x\cdot16}=21\)

<=> \(\sqrt{5x\cdot3^2}-2\sqrt{2^2\cdot5x}+2\sqrt{5x\cdot4^2}=21\)

<=> \(\left|3\right|\sqrt{5x}-2\cdot\left|2\right|\sqrt{5x}+2\cdot\left|4\right|\sqrt{5x}=21\)

<=> \(\sqrt{5x}\cdot\left(3-4+8\right)=21\)

<=> \(\sqrt{5x}\cdot7=21\)

<=> \(\sqrt{5x}=3\)

<=> \(5x=9\)

<=> \(x=\frac{9}{5}\left(tm\right)\)

9 tháng 10 2020

ơ đang làm lại bấm " Gửi trả lời " ._.

2b) \(\sqrt{x^2-10x+25}=4\)

<=> \(\sqrt{\left(x-5\right)^2}=4\)

<=> \(\left|x-5\right|=4\)

<=> \(\orbr{\begin{cases}x-5=4\\x-5=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

3. \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

ĐK : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\right)\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

25 tháng 7 2018

a,\(x\ge0,x\ne49\)