Tìm x:
\(\frac{x+11}{115}+\frac{x+22}{104}=\frac{x+33}{93}+\frac{x+44}{82}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+11}{115}+\frac{x+22}{104}=\frac{x+33}{93}+\frac{x+44}{82}\)
\(\Rightarrow\left(\frac{x+11}{115}+1\right)+\left(\frac{x+22}{104}+1\right)=\left(\frac{x+33}{93}+1\right)+\left(\frac{x+44}{82}+1\right)\)
\(\Rightarrow\frac{x+126}{115}+\frac{x+126}{104}=\frac{x+126}{93}+\frac{x+44}{82}\)
\(\Rightarrow\frac{x+126}{115}+\frac{x+126}{104}-\frac{x+126}{93}-\frac{x+126}{82}=0\)
\(\Rightarrow\left(x+126\right).\left(\frac{1}{115}+\frac{1}{104}+\frac{1}{93}+\frac{1}{82}\right)=0\)
\(\Rightarrow x+126=0\)( vì \(\frac{1}{115}+\frac{1}{104}+\frac{1}{93}+\frac{1}{82}\ne0\) )
\(\Rightarrow x=-126\)
vậy \(x=-126\)
\(\left(\frac{x+11}{115}+1\right)+\left(\frac{x+22}{104}+1\right)=\left(\frac{x+33}{93}+1\right)+\left(\frac{x+44}{82}\right)\)
<=> \(\frac{x+126}{115}+\frac{x+126}{104}=\frac{x+126}{93}+\frac{x+126}{82}\)
<=> \(\left(x+126\right)\left(\frac{1}{115}+\frac{1}{104}-\frac{1}{93}-\frac{1}{82}\right)=0\)
<=> x+126=0
<=>x=-126
\(\frac{x-11}{95}+\frac{x-13}{93}=\frac{x-15}{91}+\frac{x-17}{89}\) => \(\frac{x-11}{95}-1+\frac{x-13}{93}-1=\frac{x-15}{91}-1+\frac{x-17}{89}-1\)
=>\(\frac{x-106}{95}+\frac{x-106}{93}=\frac{x-106}{91}+\frac{x-106}{89}\)
=>\(\left(\frac{1}{95}+\frac{1}{93}\right)\left(x-106\right)-\left(\frac{1}{91}+\frac{1}{89}\right)\left(x-106\right)=0\)
<=>\(\left[\left(\frac{1}{95}+\frac{1}{93}\right)-\left(\frac{1}{91}+\frac{1}{89}\right)\right]\left(x-106\right)=0\).Vì\(\frac{1}{95}< \frac{1}{91};\frac{1}{93}< \frac{1}{89}\) nên\(\frac{1}{95}+\frac{1}{93}< \frac{1}{91}+\frac{1}{89}\)
=>\(\left(\frac{1}{95}+\frac{1}{93}\right)-\left(\frac{1}{91}+\frac{1}{89}\right)< 0\) hay khác 0.Vậy x - 106 = 0, tìm được x = 106
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
\(\Rightarrow x-21=0\Rightarrow x=21\)
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)( trừ cả hai vế cho 2 )
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}-\frac{x-21}{13}-\frac{x-21}{14}=0\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x-21=0\)
\(\Leftrightarrow x=21\)
Vậy \(x=21\)
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
\(\frac{x+11}{115}+\frac{x+22}{104}=\frac{x+33}{93}+\frac{x+44}{82}\)
\(\Leftrightarrow\frac{1+\left(x+11\right)}{115}+\frac{1+\left(x+22\right)}{104}=\frac{1+\left(x+33\right)}{93}+\frac{1+\left(x+44\right)}{82}\)
\(\Leftrightarrow\frac{x+126}{115}+\frac{x+126}{104}=\frac{x+126}{93}+\frac{x+126}{82}\)
\(\Leftrightarrow\left(x+126\right).\left(\frac{1}{115}+\frac{1}{104}+\frac{1}{93}+\frac{1}{82}\right)=0\)
\(\Leftrightarrow x+126=6\Leftrightarrow x=-126\)vì\(\frac{1}{115}+\frac{1}{104}+\frac{1}{93}+\frac{1}{82}\ne0\)
vậy x=-126