Giải phương trình: \(\sin3x-4\sin x\cos2x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\sin3x+\sin5x-2\sin x\cos2x=0\)
\(\Leftrightarrow\)\(4\sin3x+\sin5x-\sin3x+\sin x=0\)
\(\Leftrightarrow3\sin3x+\sin5x+\sin x=0\)
\(\Leftrightarrow3\sin3x+2\sin3x\cos2x=0\)
\(\Leftrightarrow\sin3x\left(3+2\cos2x\right)=0\)
Đáp số : \(x=k\dfrac{\pi}{3},k\in\mathbb{Z}\)
a.
\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos2x+\dfrac{1}{16}\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x=cos2x+\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{15}{16}-\dfrac{3}{4}\left(1-cos^22x\right)=cos2x\)
\(\Leftrightarrow\dfrac{3}{4}cos^22x-cos2x+\dfrac{3}{16}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{4-\sqrt{7}}{6}\\cos2x=\dfrac{4+\sqrt{7}}{6}>1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\dfrac{1}{2}arccos\left(\dfrac{4-\sqrt{7}}{6}\right)+k\pi\)
b.
\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{5}{2}-2sinx\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^2x=\dfrac{5}{2}-2sinx\)
\(\Leftrightarrow\dfrac{1}{2}sin^2x-2sinx+\dfrac{3}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=3\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow\sqrt{3}cos5x-\left(sin5x+sinx\right)-sinx=0\)
\(\Leftrightarrow\sqrt{3}cos5x-sin5x=2sinx\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=sinx\)
\(\Leftrightarrow sin\left(\frac{\pi}{3}-5x\right)=sinx\)
\(\Leftrightarrow...\)
a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2
⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =
⇔
b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.
Đặt α = arccos thì phương trình trở thành
cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π
⇔ x = , k ∈ Z (trong đó α = arccos).
\(sin3x-4sinx\cdot cos2x=0\\ \Leftrightarrow3sinx-4sin^3x-4sinx\left(1-2sin^2x\right)=0\Leftrightarrow4sin^3x-sinx=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=0\\2sin^2x=\frac{1}{2}\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+n\pi\end{matrix}\right.\)