Tìm số tự nhiên n để :
n + 5 \(^⋮\)n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n+5}{n-5}=\frac{n-5}{n-5}+\frac{10}{n-5}=1+\frac{10}{n-5}\)
Để n là số tự nhiên thì 10 phải chia hết cho n-5; n-5 phải là số tự nhiên
Mà 10 chia hết cho 2; 5
=> n-5=2 hoặc n-5=5
<=> n=7hoặc n=10
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
Vì n+n =2n (chẵn)
Vì trong các số nguyên tố chỉ có 2 số nguyên tố liên tiếp là 2,3
=>2n+1=3
=>n=1
tíc mình nha
\(a,\Rightarrow n+2+3⋮n+2\\ \Rightarrow n+2\inƯ\left(3\right)=\left\{1;3\right\}\\ \Rightarrow n=1\left(n\in N\right)\\ b,\Rightarrow n-2+7⋮n-2\\ \Rightarrow n-2\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n=5\left(n\in N\right)\\ c,\Rightarrow\left(n^2-n\right)+\left(3n-3\right)+3⋮n-1\\ \Rightarrow n\left(n-1\right)+3\left(n-1\right)+3⋮n-1\\ \Rightarrow n-1\inƯ\left(3\right)=\left\{1;3\right\}\\ \Rightarrow n\in\left\{2;4\right\}\)
+ Với \(n=1\)\(\Rightarrow\)\(n+5=1+5=6\)( Là hợp số, loại )
+ Với \(n=2\)\(\Rightarrow\)\(\hept{\begin{cases}n+1=2+1=3\\n+5=2+5=7\\n+9=2+9=11\end{cases}}\)( TM )
+ Với \(n=3\)\(\Rightarrow\)\(n+5=3+5=8\)( Là hợp số, loại )
+ Với \(n>3\)thì n có dạng \(\hept{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)\(\left(k>0\right)\)
+ Với \(n=3k+1\)\(\Rightarrow\)\(n+5=3k+6=3.\left(k+2\right)⋮3\)( Là hợp số, loại )
Vậy \(n=2\)
Cái này thì chắc chắn là không có số n nào thỏa mãn rồi bạn
Bởi vì (n+5)(n+1) ko bao giờ là số nguyên tố
Nguyên Trinh Quang
Để chia hết thì
n là ước của 30 và chia hết cho 6
Vậy
n = 1, 3 ,10 , 30
=>n+1+4 chia hết cho n+1
=>4 chia hết cho n+1
=> n+1 thuộc ước của 4
=> n+1 thuộc 1;-1;2;-2;4;-4
thay vào rồi -> n=.....
hok tốt