1/4*9+1/9*14+1/14*19+.....+1/1999*2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/4*9+1/9*14+1/14*19+...+1/1999*2004
= 1/5 (1/4 - 1/9 + 1/9 - 1/14 + ... + 1/1999 - 1/2004)
= 1/5 (1/4 - 1/2004)
= 1/5 (501/2004 - 1/2004)
= 1/5 . 125/501
= 25/501
\(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{1999+2004}\).
Có sai đề không vậy???
Sửa đề một chút :v
\(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{1999\cdot2004}\)
\(=\frac{1}{5}\left[\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{5}{1999\cdot2004}\right]\)
\(=\frac{1}{5}\left[\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{1999}-\frac{1}{2004}\right]\)
\(=\frac{1}{5}\left[\frac{1}{4}-\frac{1}{2004}\right]\)
\(=\frac{1}{5}\cdot\frac{125}{501}=\frac{25}{501}\)
Đặt A =1/4 x 9 + 1/9 x 14 + 1/14 x 19 +...+ 1/1999 + 2004. Ta có:
A= 1/4 x 9 + 1/9 x 14 + 1/14 x 19 +...+ 1/1999 + 2004
5A= 5/4 x 9 + 5/9 x 14 + 5/14 x 19 +...+ 5/1999 + 2004
5A= 1/4 - 1/9 + 1/9 - 1/14 + 1/14 - 1/19 +...+ 1/1999 - 1/2004
5A= 1/4 - 1/2004
A= (1/4 - 1/2004)/5
Ta có :
A = \(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
5A = \(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{64.69}\)
5A = \(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{64}-\frac{1}{69}\)
5A = \(\frac{1}{4}-\frac{1}{69}\)
5A = \(\frac{65}{276}\)
A = \(\frac{65}{276}:5\)
A = \(\frac{13}{276}\)
a)=(3/8+10/16)+(7/12+10/24)
=1+1=2
c)=(4/6+14/6)+(7/13+19/13)+(17/9+1/9)
=3+2+2=7
1: =1-1+5-5+7-7+8-8=0
2: =14-23+5+14-5+23+17
=28+17=45
3: =12-12+9-9+14-44-3=-33
4: =22-8-8-12+4
=22-16-8
=-2
Bài \(1\)
\(1)\) \(1-5+7-8+4-1+5-7+8\)
\(=(1-1)+(5-5)+(7-7)+(8-8)\)
\(=0+0+0+0\)
\(=0\)
\(2)\) \(14-23+(5+14)-(5-23)+17\)
\(=14-23+5+14-5+23+17\)
\(=(14+14)+(23-23)+(5-5)+17\)
\(=28+17\)
\(=45\)
\(3)\) \(12-44+9-3+14-19-9-12\)
\(=(12-12)+(9-9)+(14-44)+3\)
\(=-30+3\)
\(=-33\)
\(4)\) \(22-(4-8+12)+(-8-12+4)\)
\(=22-4+8-12-8-12+4\)
\(=22+(4+4)+(8-8)+(-12-12)\)
\(=22-24\)
\(=-2\)
\(\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{1999\times2004}\)
\(=\frac{1}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{1999\times2004}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{1999}-\frac{1}{2004}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{4}-\frac{1}{2004}\right)\)
\(=\frac{1}{5}\times\frac{500}{2004}=\frac{25}{501}\)