Tính giá trị của các biểu thức sau
\(\frac{5^4+2^2.5^2-125}{2^3.3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2^2.3^2.2.3^2}{2^2.3^2.5}=\frac{2.3^2}{5}=\frac{18}{5}\)
\(\begin{array}{l}a)\frac{{{3^{12}} + {3^{15}}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}} + {3^{12}}{{.3}^3}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}}.(1 + {3^3})}}{{1 + {3^3}}}\\ = {3^{12}}\\b)2:{\left( {\frac{1}{2} - \frac{2}{3}} \right)^2} + 0,{125^3}{.8^3} - {( - 12)^4}:{6^4}\\ = 2:{\left( {\frac{3}{6} - \frac{4}{6}} \right)^2} + {(0,125.8)^3} - {12^4}:{6^4}\\ = 2:{\left( {\frac{{ - 1}}{6}} \right)^2} + {1^3} - {(\frac{{12}}{6})^4}\\ = 2:\frac{1}{{36}} + 1 - {2^4}\\ = 2.36 + 1 - 16\\ = 72 + 1 - 16=57\end{array}\)
Đặt \(\sqrt[4]{5}=x\) thì \(x^4=5\). Ta có :
A = \(\frac{2}{\sqrt{4-3x+2x^2-x^3}}\)= \(\frac{2\left(x+1\right)}{\sqrt{\left(x+1\right)^2\left(4-3x+2x^2-x^3\right)}}\)= \(\frac{2\left(x+1\right)}{\sqrt{-x^5+5x+4}}\)
Ta thấy \(-x^5+5x\) = \(x\left(5-x^4\right)\)= \(0\)
nên A = \(\frac{2\left(x+1\right)}{\sqrt{4}}\)= \(x+1\)=\(\sqrt[4]{5}+1\)
Ta có : \(\frac{5^4+2^2.5^2-125}{2^2.3}=\frac{5^4+5^2.2^2-5^3}{8.3}=\frac{5^2\left(5^2+2^2-5\right)}{24}=\frac{5^2.24}{24}=5^2=25\)