K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

S = 72013 -  72012 + 72011 - 72010 + ........ + 73- 72 + 7 - 1 

     = (72013 -  72012) + (72011 - 72010) + ........ + (73- 72) + (7 - 1)

     = 72012(7 - 1) + 72010(7 - 1) + ... + 72(7 - 1) + (7 - 1)

     =  72012.6+ 72010.6 + ... + 72.6+ 6 

     = 6(72012 + 72010 + .... + 72\(⋮\)

=> S  \(⋮\)6

thanks Xyz

7 tháng 2 2019

Chứng minh rằng A chia hết cho 15 => A chia hết cho 3 và 5
Giải:
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3 ( vì 6 chia hết cho 3)
chứng minh tương tự cho A chia hết cho 5
Tìm chữ số tận cùng của A?
Gi​ải:
Ta có:
2^1 + 2^2 + 2^3 + 2^4 = 2 + 4 + 8 + 16 = 30 tức có tận cùng là 0
2^5 + 2^6 + 2^7 + 2^8 = 32 + 64 + 128 + 256 = 480 tức có tận cùng là 0
Vậy cứ nhóm 4 số sẽ tận cùng là 0 mà từ 2^1 đến 2^100 chia hết cho 4 nhóm vừa đủ. Vậy chữ số tận cùng của A là 

22 tháng 10 2018
  1. a,2^0+2^1+2^2+...+2^2005                                                                                                                                                          2A=2^0.2+2^1.2...+2^2005.2                                                                                                                                                        2^1+2^2+...+2^2006                                                                                                                                                                2A=2A-A=>[2^1+2^2...2^2006]-[2^0+2^1+2^2+...2^2005]                                                                                                             A=[2^2006-2^0]:1
21 tháng 11 2015

bó tay . com .vn

1 tháng 1 2016

S= (2+2^2+2^3+2^4) + .......+ (2^97+2^98+2^99+2^100) = 2.(1+2+2^2+2^3) + ........+2^97.(1+2+2^2+2^3)

= 2.15+........+2^97.15 = 15.(2+2^5+.........+2^97) * 15

Ta có : 2S = 2^2+2^3+2^4+.......+2^101

=> 2S-S = (2^2+2^3+2^4+.........+2^101) - (2+2^2+2^3+........+2^100) = 2^101 - 2 = S

vì 2^101-2 = 2^100.2-2 = (.....6) . 2 -2 = (.....2) - 2 = (......0) 

vậy S có c/s tận cùng là 0

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$