K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(ĐK:x\in R\)

Đặt \(x^2-2x=a\), PTTT:

\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

 

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

NV
24 tháng 12 2020

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

29 tháng 10 2021

\(PT\Leftrightarrow x^2-2x+\sqrt{6x^2-12x+7}=0\\ \Leftrightarrow x^2-2x+1+\sqrt{6x^2-12x+7}-1=0\\ \Leftrightarrow\left(x-1\right)^2+\dfrac{6\left(x-1\right)^2}{\sqrt{6x^2-12x+7}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}\right)=0\\ \Leftrightarrow x=1\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}>0\right)\)

29 tháng 10 2021

em cảm ơn 

13 tháng 12 2015

Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge1\right)\)
\(\Rightarrow x^2-2x=\frac{t^2-7}{6}\)
pt trên tương đương với \(\frac{7-t^2}{6}+t=0\)
\(\Leftrightarrow t^2-7-6t=0\)
\(\Leftrightarrow\int^{t=-1}_{t=7}\)
\(\Leftrightarrow t=7\)(vì \(t\ge1\))
thay vào rồi bình phương lên tìm x

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

25 tháng 11 2018

\(2x-x^2+\sqrt{6x^2-12x+7}=0\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)(1)

Đặt \(t=x^2-2x\)(t\(\ge0\))

Vậy (1)\(\Leftrightarrow\sqrt{6t+7}=t\Leftrightarrow6t+7=t^2\Leftrightarrow t^2-6t-7=0\Leftrightarrow t^2+t-7t-7=0\Leftrightarrow t\left(t+1\right)-7\left(t+1\right)=0\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t+1=0\\t-7=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=-1\left(ktm\right)\\t=7\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow t=7\Leftrightarrow x^2-2x=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x^2-2x+1=8\Leftrightarrow\left(x-1\right)^2=8\Leftrightarrow x-1=\pm2\sqrt{2}\Leftrightarrow x=1\pm2\sqrt{2}\)Vậy S={\(1\pm2\sqrt{2}\)}

30 tháng 11 2018

thanks

6 tháng 10 2023

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.