K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

1 tháng 5 2020

Ta có:\(N=\frac{4x+1}{4x^2+2}\Leftrightarrow N.4x^2+2N=4x+1\)

\(x^2\cdot4N-2.2x+\left(2N+1\right)=0\)

Xét \(\Delta'=4-\left(2N+1\right)\cdot4N=-8N^2-4N+4\ge0\)

Đến đây bạn chặn N là được nhé ! Ắt sẽ có Max

2 tháng 5 2020

a) \(x^2+2x+4^n-2^{n+1}+1=0\)

\(\Leftrightarrow x^2+2x+1+2^{2n}+2^{n+1}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(2^{2n}-2\cdot2^n+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2^n-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\n=0\end{cases}}}\)

Vậy x=-1 và n=0

\(-\left(x-1\right)\left(x+4\right)\le0\)

\(\Rightarrow x+4\le0\)

\(\Rightarrow x\le-4\)

17 tháng 1 2017

a)=0 trước nhé

\(\Rightarrow\orbr{\begin{cases}-\left(x-1\right)=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}-x+1=0\\x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

<0 nè

=>-(x-1);x+4 trái dấu;mọi x

ta có

x+4+x-1=2x+3

chịu

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp

22 tháng 12 2021

3r3reR

9 tháng 7 2016

thích làm mỗi bài 3 vi các bai khac vua de, vua dai viet mệt

3) 3n : 3n-1 = 3n-n+1 = 3

9 tháng 7 2016

Số nguyên n thỏa mãn đẳng thức -81/(-3)^n =-243 <=> (-3)^n x (-243) = -81 <=> (-3)^n x (-3)^5 = (-3)^4 

<=> (-3)^n = (-3)^4 : (-3)^5 <=> (-3)^n = (-3)^4-5  <=> (-3)^n = (-3)^(-1) => n=-1. 

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

1.

Ta thấy $(x-13)^2\geq 0$ với mọi $x$

$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$

Vậy GTNN của $T$ là $-26$.

Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

2.

Ta thấy: $(x-14)^2\geq 0$ với mọi $x$

$\Rightarrow M=20-(x-14)^2\leq 20-0=20$

Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$

Hay $x=14$.