Cho tam giác ABC vuông tại A , góc ABC = \(50^o\)
a ) Tính góc ACB
b ) Kẻ tia phân giác của góc ABC cắt AC tại D . Trên BC lấy điểm E sao cho BA = BE . Chứng minh : \(\Delta BAD=\Delta BED\).
c ) Gọi M là giao điểm của AB và DE . Chứng minh DM = DC
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và cùng với tất cả các bạn khác vào giúp mình với ạ !!!
a) Vì \(\Delta ABC\) vuông tại \(A\left(gt\right)\)
=> \(\widehat{BAC}=90^0.\)
Xét \(\Delta ABC\) có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\) (định lí tổng 3 góc trong một tam giác).
=> \(90^0+50^0+\widehat{ACB}=180^0\)
=> \(140^0+\widehat{ACB}=180^0\)
=> \(\widehat{ACB}=180^0-140^0\)
=> \(\widehat{ACB}=40^0.\)
b) Xét 2 \(\Delta\) \(BAD\) và \(BED\) có:
\(BA=BE\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\) (vì \(BD\) là tia phân giác của \(\widehat{ABC}\))
Cạnh BD chung
=> \(\Delta BAD=\Delta BED\left(c-g-c\right).\)
c) Theo câu b) ta có \(\Delta BAD=\Delta BED.\)
=> \(AD=ED\) (2 cạnh tương ứng).
=> \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^0\left(gt\right)\)
=> \(\widehat{BED}=90^0.\)
Xét 2 \(\Delta\) vuông \(ADM\) và \(EDC\) có:
\(\widehat{DAM}=\widehat{DEC}=90^0\)
\(AD=ED\left(cmt\right)\)
\(\widehat{ADM}=\widehat{EDC}\) (vì 2 góc đối đỉnh)
=> \(\Delta ADM=\Delta EDC\) (cạnh góc vuông - góc nhọn kề).
=> \(DM=DC\) (2 cạnh tương ứng) (đpcm).
Chúc bạn học tốt!